• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Série geométrica

Série geométrica

Mensagempor lucasguilherme2 » Seg Ago 13, 2012 23:05

Boa noite pessoal. Estou revendo alguns conceitos de séries geométricas. No seguinte exercício é pedido para que se determine o termo inicial "a" e a razão "r", com isso determinar se a série geométrica converge ou diverge:

\sum_{k=1}^{\infty} \frac{{3}^{k-1}}{{4}^{k+1}}



Estou com dúvidas em como solucionar ou tratar os expoentes. Se poderem me ajudar, serei grato. :)
Grande abraço!

Ass.: Lucas Guilherme
lucasguilherme2
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Mai 24, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais
Andamento: cursando

Re: Série geométrica

Mensagempor Russman » Ter Ago 14, 2012 00:09

Note que

\frac{3^{k-1}}{4^{k+1}} = \frac{3^k.\frac{1}{3}}{4^k.4}=\frac{1}{12}\left ( \frac{3}{4} \right )^k.

Assim,

\sum_{k=1}^{\infty }\frac{3^{k-1}}{4^{k+1}} = \sum_{k=1}^{\infty } \frac{1}{12} \left (  \frac{3}{4} \right )^k.

O termo geral \frac{1}{12} \left ( \frac{3}{4} \right )^k = \frac{1}{12}\frac{3}{4}\left ( \frac{3}{4} \right )^{k-1}=\frac{1}{16}\left ( \frac{3}{4} \right )^{k-1} é característico de uma P.G. de primeiro termo \frac{1}{16} e razão \frac{3}{4}< 1. Assim, dos infinitos termos converge para

\sum_{k=1}^{\infty } \frac{1}{12} \left ( \frac{3}{4} \right )^k = \frac{\frac{1}{16}}{1-\frac{3}{4}}=\frac{1}{16}.4.\frac{1}{1} = \frac{1}{4}.

Lembre-se que

\lim_{N\rightarrow \infty }\sum_{k=1}^{N }a_1.q^{k-1} = \frac{a_1}{1-q}

se \left | q \right | < 1.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Série geométrica

Mensagempor lucasguilherme2 » Ter Ago 14, 2012 00:30

Nossa, obrigado mesmo :)
lucasguilherme2
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Mai 24, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)