• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - radiciação

Dúvida - radiciação

Mensagempor Danilo » Sex Ago 10, 2012 01:53

Dúvida em outro exercício, lá vai:

Simplifique as raízes:

\sqrt[]{\sqrt[3]{16}}

eu multipliquei os índices e cheguei a \sqrt[6]{16}. A resposta é \sqrt[3]{4}. A única coisa que eu sei é que eu tenho que multiplicar os índices.

Travei em outro semelhante: \sqrt[]{a \sqrt[3]{a \sqrt[]{a}}}. Neste a resposta é \sqrt[4]{{a}^{3}} mas eu não sei o que eu faço com o ''a'' que está dentro da raiz. Grato desde já!

obs: postei dois exercícios pois são exercícios simples, se eu não puder me repreendam por favor !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - radiciação

Mensagempor MarceloFantini » Sex Ago 10, 2012 02:03

Note que \sqrt{\sqrt[3]{16}} = 16^{\frac{1}{3} \cdot \frac{1}{2}} = (4^2)^{\frac{1}{6}} = 4^{\frac{1}{3}} = \sqrt[3]{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida - radiciação

Mensagempor LuizAquino » Sex Ago 10, 2012 08:08

Danilo escreveu:Dúvida em outro exercício, lá vai:

Simplifique as raízes:

\sqrt[]{\sqrt[3]{16}}

eu multipliquei os índices e cheguei a \sqrt[6]{16}. A resposta é \sqrt[3]{4}. A única coisa que eu sei é que eu tenho que multiplicar os índices.

Travei em outro semelhante: \sqrt[]{a \sqrt[3]{a \sqrt[]{a}}}. Neste a resposta é \sqrt[4]{{a}^{3}} mas eu não sei o que eu faço com o ''a'' que está dentro da raiz. Grato desde já!

obs: postei dois exercícios pois são exercícios simples, se eu não puder me repreendam por favor !


A julgar por suas dúvidas, seria interessante você primeiro estudar as propriedades da radiciação antes de tentar resolver exercícios como esses.

Eu recomendo que você assista a videoaula "Matemática Zero - Aula 10 - Radiciação" que está disponível no canal do Nerckie:

http://www.youtube.com/nerckie

Eu aproveito para recomendar também a videoaula "Matemática Zero - Aula 12 - Racionalização".

Depois de assistir essas videoaulas, tente fazer esses exercícios. Se você não conseguir, então poste aqui até onde conseguiu avançar.

Observação

Em relação a duas questões por tópico (mesmo que sejam simples), o ideal é respeitar a regra do fórum que diz para enviar um exercício/dúvida por tópico. Isso deixa os tópicos mais organizados.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida - radiciação

Mensagempor Danilo » Sex Ago 10, 2012 11:22

LuizAquino escreveu:
Danilo escreveu:Dúvida em outro exercício, lá vai:

Simplifique as raízes:

\sqrt[]{\sqrt[3]{16}}

eu multipliquei os índices e cheguei a \sqrt[6]{16}. A resposta é \sqrt[3]{4}. A única coisa que eu sei é que eu tenho que multiplicar os índices.

Travei em outro semelhante: \sqrt[]{a \sqrt[3]{a \sqrt[]{a}}}. Neste a resposta é \sqrt[4]{{a}^{3}} mas eu não sei o que eu faço com o ''a'' que está dentro da raiz. Grato desde já!

obs: postei dois exercícios pois são exercícios simples, se eu não puder me repreendam por favor !


A julgar por suas dúvidas, seria interessante você primeiro estudar as propriedades da radiciação antes de tentar resolver exercícios como esses.

Eu recomendo que você assista a videoaula "Matemática Zero - Aula 10 - Radiciação" que está disponível no canal do Nerckie:

http://www.youtube.com/nerckie

Eu aproveito para recomendar também a videoaula "Matemática Zero - Aula 12 - Racionalização".

Depois de assistir essas videoaulas, tente fazer esses exercícios. Se você não conseguir, então poste aqui até onde conseguiu avançar.

Observação

Em relação a duas questões por tópico (mesmo que sejam simples), o ideal é respeitar a regra do fórum que diz para enviar um exercício/dúvida por tópico. Isso deixa os tópicos mais organizados.


Beleza ! Consegui resolver de maneira similar ao primeiro exercício que postei aqui. As vídeo-aulas do nerckie são realmente boas.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.