• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação - Dúvida

Radiciação - Dúvida

Mensagempor Danilo » Qui Ago 09, 2012 22:37

Não estou conseguindo concluir um exercício de radiciação, lá vai:

\sqrt[]{2} \cdot \sqrt[]{2 + \sqrt[]{2}} \cdot \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2}}} \cdot \sqrt[]{2 - \sqrt[]{2 + \sqrt[]{2}}}

Bom, vou postar aqui o que eu fiz e quero que por favor me digam onde estou errando !

\sqrt[]{ 2 \cdot \left(2 + \sqrt[]{2} \right) \cdot \left(2 + \sqrt[]{2 + \sqrt[]{2} } \right) \cdot \left(2 - \sqrt[]{2 + \sqrt[]{2}} \right)}


\sqrt[]{  \left(4 + 2 \sqrt[]{2} \right) \cdot \left(2 + \sqrt[]{2 + \sqrt[]{2} } \right) \cdot \left(2 - \sqrt[]{2 + \sqrt[]{2}} \right)}

\sqrt[]{\left(4 + 2 \sqrt[]{2} \right) \cdot \left[{\left(2 \right)}^{2}  - {\left(\sqrt[]{2 + \sqrt[]{2}} \right)}^{2}\right] }

\sqrt[]{\left(4 + 2 \sqrt[]{2} \right) \left(4 - \sqrt[]{6 + 4 \sqrt[]{2}} \right)}

Bom, depois daqui eu aplico a distributiva e multiplico normalmente mas não consigo chegar no resultado ! A resposta é 2... Errei até ali? Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Radiciação - Dúvida

Mensagempor MarceloFantini » Qui Ago 09, 2012 23:24

Note que

2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2^2 - \left( \sqrt{2 + \sqrt{2}} \right)^2 \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 4 - (2 + \sqrt{2}) \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 - \sqrt{2} \right)
= 2 \cdot \left( 2^2 - (\sqrt{2})^2 \right)
= 2 \cdot (4 - 2)
= 2 \cdot 2 = 4,

daí

\sqrt{2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)}
\sqrt{4} = 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Radiciação - Dúvida

Mensagempor Danilo » Sex Ago 10, 2012 00:04

MarceloFantini escreveu:Note que

2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2^2 - \left( \sqrt{2 + \sqrt{2}} \right)^2 \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 4 - (2 + \sqrt{2}) \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 - \sqrt{2} \right)
= 2 \cdot \left( 2^2 - (\sqrt{2})^2 \right)
= 2 \cdot (4 - 2)
= 2 \cdot 2 = 4,

daí

\sqrt{2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)}
\sqrt{4} = 2.


Valeu! :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.