• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação - Dúvida

Radiciação - Dúvida

Mensagempor Danilo » Qui Ago 09, 2012 22:37

Não estou conseguindo concluir um exercício de radiciação, lá vai:

\sqrt[]{2} \cdot \sqrt[]{2 + \sqrt[]{2}} \cdot \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2}}} \cdot \sqrt[]{2 - \sqrt[]{2 + \sqrt[]{2}}}

Bom, vou postar aqui o que eu fiz e quero que por favor me digam onde estou errando !

\sqrt[]{ 2 \cdot \left(2 + \sqrt[]{2} \right) \cdot \left(2 + \sqrt[]{2 + \sqrt[]{2} } \right) \cdot \left(2 - \sqrt[]{2 + \sqrt[]{2}} \right)}


\sqrt[]{  \left(4 + 2 \sqrt[]{2} \right) \cdot \left(2 + \sqrt[]{2 + \sqrt[]{2} } \right) \cdot \left(2 - \sqrt[]{2 + \sqrt[]{2}} \right)}

\sqrt[]{\left(4 + 2 \sqrt[]{2} \right) \cdot \left[{\left(2 \right)}^{2}  - {\left(\sqrt[]{2 + \sqrt[]{2}} \right)}^{2}\right] }

\sqrt[]{\left(4 + 2 \sqrt[]{2} \right) \left(4 - \sqrt[]{6 + 4 \sqrt[]{2}} \right)}

Bom, depois daqui eu aplico a distributiva e multiplico normalmente mas não consigo chegar no resultado ! A resposta é 2... Errei até ali? Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Radiciação - Dúvida

Mensagempor MarceloFantini » Qui Ago 09, 2012 23:24

Note que

2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2^2 - \left( \sqrt{2 + \sqrt{2}} \right)^2 \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 4 - (2 + \sqrt{2}) \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 - \sqrt{2} \right)
= 2 \cdot \left( 2^2 - (\sqrt{2})^2 \right)
= 2 \cdot (4 - 2)
= 2 \cdot 2 = 4,

daí

\sqrt{2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)}
\sqrt{4} = 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Radiciação - Dúvida

Mensagempor Danilo » Sex Ago 10, 2012 00:04

MarceloFantini escreveu:Note que

2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2^2 - \left( \sqrt{2 + \sqrt{2}} \right)^2 \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 4 - (2 + \sqrt{2}) \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 - \sqrt{2} \right)
= 2 \cdot \left( 2^2 - (\sqrt{2})^2 \right)
= 2 \cdot (4 - 2)
= 2 \cdot 2 = 4,

daí

\sqrt{2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)}
\sqrt{4} = 2.


Valeu! :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.