• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função]Questão da EPCAR

[Função]Questão da EPCAR

Mensagempor -daniel15asv » Sex Ago 03, 2012 16:28

Lucas e Mateus são apaixonados por futebol. Eles praticam futebol no quintal de casa, que é totalmente plano e possui uma rede de 3 m de altura.

Numa brincadeira, Mateus posiciona a bola a 4 m da rede e Lucas varia sua posição em lado oposto à rede, aproximando-se ou afastando-se dela, conservando uma mesma linha reta coma bola, perpendicular à rede.
Mateus lança a bola para Lucas co um único toque na bola, sem que atinja o chão, sem tocar a rede.

Considere um plano cartesiano em que:
- cada lançamento realizado por Mateus é descrito uma trajetória parabólica;
- Lucas e o ponto de partida da bola estão no eixo \leftrightarrow
Ox (A SETA É EM CIMA DO Ox)
- a posição da bola é um ponto (x,y) desse plano, onde y=f(x) é a altura atingida pela bola, em metros, em relação ao chão.

Assinale, dentre as alternativas abaixo, aquela que tem a lei de uma função f que satisfaz às condições estabelecidas na brincadeira de Lucas e Mateus.

a) f(x) = - x²/8 + 2 b) -x²/16 + x/4+15/4

c) f(x)= -3x²/16 + 3 d) -0,1x² + 0,2x + 4,8

Veja se estou correto para fazer recurso?

Resolução: ANULADA
Sem perda de generalidade, considere que Mateus está situado num ponto x m= que é a menor raiz da
parábola descrita pela bola. Para que encontremos uma equação de parábola que satisfaça as informações
do problema, o valor numérico para x m= + 4 deve ser no mínimo igual a 3, de forma que a bola
ultrapasse a rede.Como não foi dito em que posição está a origem do sistema de eixos, qualquer parábola que atenda à
condição supracitada satisfaz ao problema. Portanto, a única equação que NÃO satisfaz ao problema é f(x)= -x²/8 + 2.
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função]Questão da EPCAR

Mensagempor -daniel15asv » Sáb Ago 04, 2012 15:19

Me ajudeem Porfavor
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.