• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ITA - ângulos , altura h e H

ITA - ângulos , altura h e H

Mensagempor PeterHiggs » Ter Jul 31, 2012 17:36

Olá pessoal, estou com uma dúvida nessa questão do ITA, se eu não me engano é de 1995, mas não tenho lá muita certeza!

(ITA) - Um dispositivo colocado no solo a uma distância d de uma torre dispara dois projéteis em trajetórias retilíneas. O primeiro, lançado sob um ângulo \theta ? (0,\frac{\pi}{4}), atinge a torre a uma altura h. Se o segundo, disparado sob um ângulo 2\theta, atinge-a a uma altura H, a relação entre as duas alturas será:


a) H = \frac{2hd^2}{(d^2-h^2)}

b) H = \frac{2hd^2}{(d^2+h)}

c) H = \frac{2hd^2}{(d^2-h)}

d) H = \frac{2hd^2}{(d^2+h^2)}

e) H = \frac{hd^2}{(d^2+h)}

Bom, tentei resolver aqui, mas acabei emperrando. Vou colocar um desenho pra facilitar o entendimento do meu raciocínio:

ITA - ângulo.png
ITA - ângulo.png (4.47 KiB) Exibido 6230 vezes


x^2 = d^2 + H^2
x = \sqrt{d^2+H^2}

e

y^2 = d^2 + h^2
y = \sqrt{d^2+h^2}

Além disso:

sen\theta=\frac{h}{y} = \frac{h}{\sqrt{d^2+h^2}}

cos\theta = \frac{d}{y}=\frac{d}{\sqrt{d^2+h^2}}

Por fim:

sen 2\theta = \frac{H}{x} >>>>>>>>>>>> 2sen\theta cos\theta = \frac{H}{\sqrt{d^2+H^2}}

Aí, eu substituo os valores de sen\theta e cos\theta, entretanto ,não tenho como isolar o H. Ficaria assim:

\frac{H}{\sqrt{d^2+H^2}} = \frac{2hd}{(d^2+h^2)}

Não consigo isolar o H, entendem. Alguém pode ajudar?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: ITA - ângulos , altura h e H

Mensagempor Russman » Ter Jul 31, 2012 18:10

Você procedeu de maneira correta.

Note que

\frac{H}{\sqrt{d^2 + H^2}} = \frac{2hd}{d^2+h^2}\Rightarrow \frac{H(d^2+h^2)}{2hd}=\sqrt{d^2+H^2}\Rightarrow d^2+H^2 = \frac{H^2(d^2+h^2)^2}{4h^2d^2}

\Rightarrow 4h^2d^4 + 4H^2h^2d^2 = H^2(d^2+h^2)^2 \Rightarrow H^2(-4h^2d^2 + d^4 +h^4+2h^2d^2) = 4h^2d^4

\Rightarrow H^2 =  \frac{4h^2d^4}{(d^2-h^2)^2}\Rightarrow H=\frac{2hd^2}{\left |d^2-h^2  \right |}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: ITA - ângulos , altura h e H

Mensagempor PeterHiggs » Qua Ago 01, 2012 14:49

Opa, é verdade, nossa eu sempre comete esses erros bobos, sempre.

Obrigado Russmann !
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}