por V_Netto » Seg Jul 30, 2012 12:05

Eu comecei resolvendo por substituição, chamando u=

e cheguei na seguinte integral:

. Depois eu dividi o numerador pelo denominador (divisão de polinômios) e encontrei
![-2\int_{0}^{ln2} [(u+1)+3]du/1+u -2\int_{0}^{ln2} [(u+1)+3]du/1+u](/latexrender/pictures/77d2d658bd0520b4bcd72509427fa7c3.png)
e agora não sei como sair disso...
-
V_Netto
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Jul 30, 2012 11:45
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Química
- Andamento: formado
por Russman » Seg Jul 30, 2012 12:54
Para superar o empasse basta tomar

.
Lembre-se que quando efetuada a mudança de variável

os limites de integração passam a ser

e

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- alguem pode me ajudar a resolver essa questao?
por flavio970 » Qua Set 30, 2015 12:35
- 1 Respostas
- 1504 Exibições
- Última mensagem por nakagumahissao

Dom Out 04, 2015 12:53
Cálculo: Limites, Derivadas e Integrais
-
- alguem pode me ajudar com essa questão?
por pedrobelli » Qui Abr 01, 2010 15:36
- 1 Respostas
- 2232 Exibições
- Última mensagem por Molina

Qui Abr 01, 2010 17:13
Pedidos
-
- limite alguém pode me ajudar a resolver
por Marcia C Silva » Sáb Mai 28, 2016 22:30
- 1 Respostas
- 3084 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 22:08
Cálculo: Limites, Derivadas e Integrais
-
- limite alguém pode me ajudar a resolver
por Marcia C Silva » Sáb Mai 28, 2016 22:34
- 1 Respostas
- 3142 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 22:09
Cálculo: Limites, Derivadas e Integrais
-
- quem pode me ajudar a resolver essa equaçao?obrigado!
por flavio970 » Qua Set 30, 2015 16:10
- 1 Respostas
- 2019 Exibições
- Última mensagem por nakagumahissao

Qua Set 30, 2015 20:15
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.