• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CESESP-SP- P.A.

CESESP-SP- P.A.

Mensagempor Rafael16 » Sáb Jul 28, 2012 17:04

Boa tarde pessoal!

(Cesesp-PE) Dois andarilhos iniciam juntos uma caminhada. Um deles caminha uniformemente 10 km por dia e o outro caminha 8 km no primeiro dia e acelera o passo de modo a caminhar mais 0,5 km a cada dia que se segue. Assinale a alternativa correspondente ao número de dias caminhados para que o segundo andarilho alcance o primeiro.
(a) 10 (b) 9 (c) 3 (d) 5 (e) 21

Minha resolução:

(I) (10,20,30...)
(II)(8,33/2,...) encontrei a razão como sendo r = 17/2

(I){a}_{n}={a}_{1}+(n-1)r
Substituindo os valores, achei:
{a}_{n}=10n

(II){a}_{n}={a}_{1}+(n-1)r
Substituindo os valores:
{a}_{n}=\frac{17}{2}n-\frac{1}{2}

Igualei (I) com (II) para achar n, que é o número de dias para alcançar o primeiro:
10n = \frac{17}{2}n-\frac{1}{2}
n =- \frac{1}{3}

Não entendi se minha conta esta errada, ou se é meu raciocínio...
Gostaria que me explicasse isso, valeu!

Resposta: b
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: CESESP-SP- P.A.

Mensagempor e8group » Sáb Jul 28, 2012 21:59

Acho que isso aqui resolve seu exercício ,

\frac{\left( 8 +8 +(t-1)\frac{1}{2}\right)t}{2} = 10 t \implies t\left(-4+(t-1)\frac{1}{2}\right )=0 \implies \begin{cases} t = 0 \\-4+ (t-1)\frac{1}{2} =0\end{cases} \implies  \implies \begin{cases} t_1 = 0 \\t_2=9\end{cases} ,

portanto t = 9 dias .

OBS.: r = \frac{1}{2} km/(dias)^2
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: CESESP-SP- P.A.

Mensagempor Russman » Seg Jul 30, 2012 01:43

O seu problema pode ser resolvido interpretando-o como cinemático!

Sejam r_A e r_B as posições relativas a um referencial inercial dos andarilhos, medidas em km, e t um parâmetro, medido em dias.

Rafael16 escreveu:Dois andarilhos iniciam juntos uma caminhada.


r_A(t=0) = r_B(t=0) \equiv 0.

Rafael16 escreveu:Um deles caminha uniformemente 10 km por dia


\frac{\mathrm{d} }{\mathrm{d} t}r_A=10 \Rightarrow r_A(t)=r_A(0)+10t  =10t

Rafael16 escreveu:e o outro caminha 8 km no primeiro dia e acelera o passo de modo a caminhar mais 0,5 km a cada dia que se segue.


\frac{\mathrm{d^2} }{\mathrm{d} t^2}r_B =0,5 \Rightarrow r_B=r_B(0)+v_B(0).t+0,25.t^2

t=1\Rightarrow r_B(t=1) = 8 \Rightarrow v_B(0) = 7,75 \Rightarrow r_B(t) = 7,75.t + 0,25.t^2

No encontro, teremos r_A = r_B. Assim,

7,75t + 0,25.t² = 10t \Rightarrow t:\left\{\begin{matrix}
t_1=0(esperado)\\ 
t_2=9
\end{matrix}\right..

Assim, eles encontram-se no final do 9 dia.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: CESESP-SP- P.A.

Mensagempor Russman » Seg Jul 30, 2012 02:05

Você não pode interpretar a questão como um problema de Progressão Aritmética, pelo menos para o 2° andarilho, pois não é verdade este fato.

Veja que o segundo andarilho tem uma equação recorrente em suas posições de forma que

A(n+1) - A(n) = 0,5n
A(1) = 8
A(0)=0

enquanto que uma P.A. segue a equação

A(n+1) - A(n) = r.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?