por hygorvv » Qua Jul 25, 2012 13:12
Olá galera, bom dia.
Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+

(0,1,1) e s: X=(0,0,0)+

(1,0,1).
Resposta: 2x+2y-2z-1=0
Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.
Agradeço desde já.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Qua Jul 25, 2012 21:26
hygorvv escreveu:Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+

(0,1,1) e s: X=(0,0,0)+

(1,0,1).
Resposta: 2x+2y-2z-1=0
Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.
Cada segmento "se apoia" nas retas r e s. Em outras palavras, cada segmento tem um dos extremo na reta r e o outro na reta s.
Sejam P e Q os extremos de um segmento qualquer, de tal modo que P está em r e Q está em s.
Como P está em r, existe um escalar a tal que P = (1, 2, 2) + a(0, 1, 1). Por outro lado, como Q está em s, existe um escalar b tal que Q = (0, 0, 0) + b(1, 0, 1).
Desse modo, o ponto médio entre P e Q será dado por:

Agora tente continuar a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por hygorvv » Qui Jul 26, 2012 13:47
MUITO obrigado LuizAquino.
Na verdade, você respondeu a questão né, deu a equação vetorial do plano, o que fiz foi encontrar a geral.
Obrigado.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lugar geometrico
por heldersmd » Sáb Set 15, 2012 12:35
- 1 Respostas
- 2286 Exibições
- Última mensagem por young_jedi

Sáb Set 15, 2012 13:46
Geometria Analítica
-
- LUGAR GEOMÉTRICO
por VALDERLEY » Sáb Mai 26, 2018 21:30
- 0 Respostas
- 3545 Exibições
- Última mensagem por VALDERLEY

Sáb Mai 26, 2018 21:30
Geometria Analítica
-
- LUGAR GEOMÉTRICO
por VALDERLEY » Sáb Mai 26, 2018 21:37
- 0 Respostas
- 2857 Exibições
- Última mensagem por VALDERLEY

Sáb Mai 26, 2018 21:37
Geometria Analítica
-
- Lugar Geométrico
por Danilo » Ter Jan 08, 2013 13:33
- 1 Respostas
- 1842 Exibições
- Última mensagem por young_jedi

Ter Jan 08, 2013 14:25
Geometria Analítica
-
- Lugar Geométrico
por nayarabarbosa » Ter Set 17, 2013 11:00
- 0 Respostas
- 1283 Exibições
- Última mensagem por nayarabarbosa

Ter Set 17, 2013 11:00
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.