• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda

Ajuda

Mensagempor Pirulex » Ter Jul 24, 2012 17:20

a cisterna de uma indutria ten a forma de um paralelepípedo retangulo com dimensões internas de 8m de comprimento, 6m de largura e 5m de altura. Ela está vazia e sera abastecida por uma torneira que tem um vazão de 4m^3 por hora. qual é a função h(t) que expressa em metros o nível de água no tanque, t horas após a abertura da torneira?
Pirulex
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jul 24, 2012 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda

Mensagempor e8group » Ter Jul 24, 2012 21:32

Oque você tentou ?


Sendo as dimensões 8 x 6 x 5 , temos :

V_0 = 6\cdot8\cdot5 = 240 m^3 ,agora V_{h20} = \frac{4}{h} m^3 isso que dizer que passado "t horas " há uma variação negativa em V_0 a medida que o mesmo estar sendo ocupado pela "água" ,usando o fato da linearidade descrevemos que ,

h(t) =\frac{4 m^3}{h}\frac{t}{48m^2} \implies h(t) = \frac{1}{12} t  ,  \forall t \in [0,60] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda

Mensagempor Russman » Ter Jul 24, 2012 22:23

A água dentro da caixa, a medida que vai sendo preenchida de água, toma a forma de um paralelepípedo de dimensões 8m x 6m x h onde h é a altura do nível de água que desejamos calcular.

Assim, o volume de água é dado por

V(t)=8.6.h(t)=48.h(t).

Como a vazão é constante, podemos escrever

\frac{\Delta V}{\Delta t}=4.

Assim,

\Rightarrow V(t)-V(0)=4(t-0)\Rightarrow 48.h(t)-0=4t\Rightarrow h(t)=\frac{t}{12}.

Porém, quando o volume de água atingir todo volume do paralelepípedo não faz mais sentido calcular a altura uma vez q ela será constante. Assim, quando h=5 m então t = 5.12 = 60s. Portanto, a altura é dada por

h(t)=\frac{t}{12} para t \in [0,60]

após isso, h(t) = 5 m.

Logo

h(t)=\left\{\begin{matrix}
\frac{t}{12} & 0\leq t< 60 \\ 
 5& t\geq 60
\end{matrix}\right..
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Ajuda

Mensagempor Pirulex » Qua Jul 25, 2012 16:03

Porque você poem h(t)?
Pirulex
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jul 24, 2012 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.