• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda

Ajuda

Mensagempor Pirulex » Ter Jul 24, 2012 17:20

a cisterna de uma indutria ten a forma de um paralelepípedo retangulo com dimensões internas de 8m de comprimento, 6m de largura e 5m de altura. Ela está vazia e sera abastecida por uma torneira que tem um vazão de 4m^3 por hora. qual é a função h(t) que expressa em metros o nível de água no tanque, t horas após a abertura da torneira?
Pirulex
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jul 24, 2012 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda

Mensagempor e8group » Ter Jul 24, 2012 21:32

Oque você tentou ?


Sendo as dimensões 8 x 6 x 5 , temos :

V_0 = 6\cdot8\cdot5 = 240 m^3 ,agora V_{h20} = \frac{4}{h} m^3 isso que dizer que passado "t horas " há uma variação negativa em V_0 a medida que o mesmo estar sendo ocupado pela "água" ,usando o fato da linearidade descrevemos que ,

h(t) =\frac{4 m^3}{h}\frac{t}{48m^2} \implies h(t) = \frac{1}{12} t  ,  \forall t \in [0,60] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda

Mensagempor Russman » Ter Jul 24, 2012 22:23

A água dentro da caixa, a medida que vai sendo preenchida de água, toma a forma de um paralelepípedo de dimensões 8m x 6m x h onde h é a altura do nível de água que desejamos calcular.

Assim, o volume de água é dado por

V(t)=8.6.h(t)=48.h(t).

Como a vazão é constante, podemos escrever

\frac{\Delta V}{\Delta t}=4.

Assim,

\Rightarrow V(t)-V(0)=4(t-0)\Rightarrow 48.h(t)-0=4t\Rightarrow h(t)=\frac{t}{12}.

Porém, quando o volume de água atingir todo volume do paralelepípedo não faz mais sentido calcular a altura uma vez q ela será constante. Assim, quando h=5 m então t = 5.12 = 60s. Portanto, a altura é dada por

h(t)=\frac{t}{12} para t \in [0,60]

após isso, h(t) = 5 m.

Logo

h(t)=\left\{\begin{matrix}
\frac{t}{12} & 0\leq t< 60 \\ 
 5& t\geq 60
\end{matrix}\right..
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Ajuda

Mensagempor Pirulex » Qua Jul 25, 2012 16:03

Porque você poem h(t)?
Pirulex
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jul 24, 2012 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59