• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre a resolução de um exercício

Dúvida sobre a resolução de um exercício

Mensagempor Danilo » Qua Jul 25, 2012 12:15

Preciso da ajuda de alguém para entender a resolução de um exercício.

Se a e b são números reais tais que 1? a< b? 9, qual o menor valor que (a+b)/ab pode assumir?

Segue a resolução:

(a+b)/ab = a/ab+b/ab= 1/b +1/a

Assim a expressão (a+b)/ab = 1/b + 1/a

Será mínima quando os denominadores a e b forem máximos, ou seja a=8 e b=9 (note que, por hipótese a
(a+b)/ab = (8+9)/(8x9) = 17/72



Minha dúvida é: Até aceito que o valor máximo de b seja 9 pois b é menor ou igual a 9. Mas por que o valor máximo de a é necessariamente 8? Se a é um número real não poderia ser, por exemplo, 8.5? É isso. Agradeço a quem puder explicar !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida sobre a resolução de um exercício

Mensagempor Danilo » Qua Jul 25, 2012 12:35

Acabei de verificar aqui. De fato, está errado o que está escrito no livro. Encontrei o exercício em outro ''local'' e estava escrito ''inteiro'' ai invés de número real.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}