• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Seg Jul 09, 2012 19:55

Determine a equação do plano paralelo a Oz, contendo os pontos (2,0,0) e (0,3,2)

Como iniciar?
O que tem que ser feito seria o cálculo do vetor entre os dois pontos, e depois jogar no sistema com x=0?
Mesmo assim não obtive resultado. Qualquer dica já ajuda
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor DanielFerreira » Dom Jul 15, 2012 17:18

Claudin escreveu:Determine a equação do plano paralelo a Oz, contendo os pontos (2,0,0) e (0,3,2)

Como iniciar?
O que tem que ser feito seria o cálculo do vetor entre os dois pontos, e depois jogar no sistema com x=0?
Mesmo assim não obtive resultado. Qualquer dica já ajuda

Claudin,
boa tarde!
Sabemos que a equação do plano é dada por ax + by + cy + d = 0

Como é paralelo a Oz, ou paralelo ao eixo xy, temos z = 0, com isso ax + by + d = 0

Substituindo os pontos dados na equação...
\begin{cases}2a + d = 0 ====> a = - \frac{d}{2} \\ 3b + d = 0 ====> b = - \frac{d}{3}\end{cases}

ax + by + d = 0

- \frac{d}{2}x - \frac{d}{3}y + d = 0

dividindo por d

- \frac{x}{2} - \frac{y}{3} + 1 = 0

\fbox{- 3x - 2y + 6 = 0}

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Plano

Mensagempor skin » Seg Jul 16, 2012 00:25

Também sugiro a solução:
Basta encontrarmos um vetor normal, n, ao plano.
O vetor n deve ser perpendicular ao vetor z=(0,0,1) (já que o plano é paralelo ao eixo Oz) e a qualquer outro vetor do plano. Como o plano contém os pontos A(2,0,0) e B(0,3,2), então deve conter o vetor v=BA=(-2,3,2).
Desse modo, n será dado pelo produto vetorial entre v e z.
Assim: n=vxz=(3,2,0)
Logo, o produto escalar entre n e um vetor genérico do plano,PA=(x-2,y,z) por exemplo, deve ser zero, já que n é ortogonal a qualquer vetor do plano. Segue daí a equação do plano:
<n,PA>=0=3(x-2)+2y
Logo,
3x+2y-6=0.
skin
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Jul 15, 2012 21:19
Localização: Campinas
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Plano

Mensagempor Claudin » Seg Jul 16, 2012 02:20

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59