• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites]Limites com funções trigonométricas

[Limites]Limites com funções trigonométricas

Mensagempor TuTa » Qui Jul 12, 2012 00:22

To emperrando nuns exercicios envolvendo limites com funcoes trigonometricas

1)O valor de \lim_{x\to\infty} \frac {2x^2 +2} {x} * sen (\frac  {x} {x^2 + 1})

Tentei separar os limites \lim_{x\to\infty} \frac {2x^2 +2} {x} e sen (\frac  {x} {x^2 + 1}), mas continuava dando indeterminações.

Tem outro na mesma linha:

2)\lim_{x\to0+} \frac {1} {ln x} * sen(\frac {1} {\sqrt{x}})

Eu me enrosco todo quando tem esses limites com funçoes trigonometricas. Qual seria o macete para resolve-los?
TuTa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 24, 2012 16:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limites]Limites com funções trigonométricas

Mensagempor e8group » Qui Jul 12, 2012 00:58

1)


Faça \frac{x}{x^2+1} = p , daí :

\lim_{p\to 0} \frac{2}{p}sin(p) = 2
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites]Limites com funções trigonométricas

Mensagempor TuTa » Qui Jul 12, 2012 01:33

Poha que sacada! Vlw santhiago

Ah vc usou a identidade: \lim_{p\to0} \frac {sen \theta} {\theta} = 1

E nesse aki? ln 0??

2)\lim_{x\to0+} \frac {1} {ln x} * sen(\frac {1} {\sqrt{x}})
TuTa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 24, 2012 16:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limites]Limites com funções trigonométricas

Mensagempor e8group » Qui Jul 12, 2012 12:13

TuTa escreveu:E nesse aki? ln 0??


Não ! \not\exists ln(x) para x \leq 0 entretanto x \neq 0,perceba que x\to 0^+ está em uma " vizinhança " do zero ,neste caso estar bem próximo a direita do zero .

Faça uma análise ,

\lim_{x\to 0^+} ln(x)  = " -\infty" , note que "-\infty" não é um número ,é apenas uma notação para denotar o comportamento que ln(x) " estar bem distante do zero a esquerda " .

\lim_{x\to 0^+}  sin\left(\frac{1}{\sqrt{x}}\right) =" sin(+\infty)" , perceba que "sin(+\infty)" não tem como definir . Entretanto sabemos que \exists a \in( -1,1) tal que " sin(+\infty) "  = a .

Agora ,

\lim_{x\to 0^+} \frac{1}{ln(x)} sin\left(\frac{1}{\sqrt{x}}\right)  = "\frac{1}{-\infty}" "sin(+\infty)" = " 0^-" "sin(+\infty) " . Independente de a \in (-1,0] ou a\in [0,1) , temos que :

\lim_{x\to 0^+} \frac{1}{ln(x)} sin\left(\frac{1}{\sqrt{x}}\right)= 0 .


Conclusão não existe o limite , pois os limites laterais diferem e além disso só está definido na parte real apenas valores positivos não nulos .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59