• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fuvest - Gráfico exponencial

Fuvest - Gráfico exponencial

Mensagempor Mariana Martin » Seg Jul 09, 2012 18:54

Olá, pessoal, não consigo entender porquê "a" é igual a -1, para mim a deveria ser igual a 1 positivo já que "a" é o termo independente. Me ajudem por favor.

Seja f(x)= a + {2}^{bx+c} em que a, b e c são números reais. A imagem de f é a semirreta ]?1,
?[ e o gráfico de f intercepta os eixos coordenados nos pontos (1, 0) e (0, ?3/4). Então,
o produto abc vale?
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fuvest - Gráfico exponencial

Mensagempor Russman » Seg Jul 09, 2012 19:25

Você possui 3 informação sobre a função. Monte um sistema, determine os parametros separadamente e , em seguida, efetue o produto.

\left\{\begin{matrix}
\lim_{x\rightarrow -\infty } f(x) = -1\\ 
f(0)=-\frac{3}{4}\\ 
f(1)=0
\end{matrix}\right.\
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fuvest - Gráfico exponencial

Mensagempor Mariana Martin » Ter Jul 10, 2012 12:54

Desculpe, não entendi qual é o produto.
Tentei começar assim:
a+{2}^{bx}.{2}^{c}=-1==
{-2}^{b}.{2}^{c}+{2}^{bx}.{2}^{c}=-1
Mas ainda assim não consigo ver como posso chegar no a= -1
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fuvest - Gráfico exponencial

Mensagempor 0 kelvin » Qua Jul 11, 2012 00:53

Conceito de limite é aplicável, mas como a fuvest não cobra limites:

Vou te dar uma dica: não tente um caminho só algébrico, pense nesse a = -1 de modo geométrico.

No papel ou em qualquer site ou programa de computador que faça gráficos de função, faça o gráfico desses três casos:

x^2
x^2 + 1
x^2 - 1

Agora veja o seguinte: vc deve saber que uma função exponencial da forma a^x, qualquer que seja o valor de x e de a a função não "encosta" no eixo x (não existe número elevado a outro que dê zero). Ou seja, a imagem é o intervalo ]0, oo[. Mas o enunciado diz que a imagem é o intervalo ]-1, oo[, oras, então o que a função tem que desloca todo o gráfico de uma unidade, tal que a função exponencial dada na questão tenha pontos na parte negativa do eixo y?

PS: a fuvest repete muito esse estilo, esta tudo lá dado e bem claro, mas se vc pula uma informação ou não entende direito, o problema fica insolúvel.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Fuvest - Gráfico exponencial

Mensagempor Mariana Martin » Qua Jul 11, 2012 12:36

Tudo bem, o termo independente faz com que a função "suba" ou "desça" em relação ao eixo das ordenadas (y), mas então, se a= -1 e o intervalo é ]-1;+\infty[, há a coordenada (0,0) ?
Isso não deveria ser impossível, como pode haver a coordenada (0,0)? Se {0}^{x} \forall x = 1
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fuvest - Gráfico exponencial

Mensagempor 0 kelvin » Qua Jul 11, 2012 14:39

Lendo novamente a questão me saltou um outro detalhe:

A forma bx + c te lembra alguma coisa? É a forma de uma função afim. Pegue uma função por exemplo f(x) = 1x + c. O que acontece com a raiz dessa função quando o valor de c varia para mais e para menos? Vê um deslocamento no eixo x para a direita e para esquerda?

Parece que houve alguma confusão no quesito domínio e imagem da função se eu entendi direito a sua dúvida. A semireta dada no enunciado esta no eixo y. O domínio da função, que são todos os reais, esta no eixo x. Tanto no conjunto de valores do domínio quanto da imagem o valor zero existe, mas na função o ponto (0,0) não existe. Basta uma rápida observação para notar que se a função passa por (1,0) e (0, -3/4), ela não passa pela origem de jeito nenhum.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Fuvest - Gráfico exponencial

Mensagempor Mariana Martin » Qui Jul 12, 2012 13:18

Agora entendi a minha dúvida, só que não compreendi seu questionamento sobre o deslocamento para a esquerda ou direita se o "c" da função f(x)=bx+c aumentar ou diminuir.
se f(x)= Im(f) então o "c" não deveria fazer a função subir ou descer?
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fuvest - Gráfico exponencial

Mensagempor e8group » Qui Jul 12, 2012 13:47

Mariana Martin escreveu:Agora entendi a minha dúvida, só que não compreendi seu questionamento sobre o deslocamento para a esquerda ou direita se o "c" da função f(x) bx+c aumentar ou diminuir.


Note que " c " é o termo que intercepta o eixo y . Basta tomar f(0) e observa o mesmo . Assim f desloca (com a mesma direção) em relação ao eixo y a medida que c varia .

OBS.: Citei direção porque a inclinação da reta é independente do termo c .

Para você visualizar , imagine uma outra função , por exemplo : g(x) = bx +\alpha c , onde \alpha é um escalar . Fazendo uma analogia se g e f fosse uma reta r e s por exemplo teríamos duas retas paralelas . Pense assim ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fuvest - Gráfico exponencial

Mensagempor e8group » Qui Jul 12, 2012 15:41

santhiago escreveu:Agora entendi a minha dúvida, só que não compreendi seu questionamento sobre o deslocamento para a esquerda ou direita se o "c" da função f(x) = bx+c aumentar ou diminuir.


Mariana Martin escreveu:Note que " c " é o termo que intercepta o eixo y . Basta tomar f(0) e observa o mesmo . Assim f desloca (com a mesma direção) em relação ao eixo y a medida que c varia .

OBS.: Citei direção porque a inclinação da reta é independente do termo c .

Para você visualizar , imagine uma outra função , por exemplo : , onde é um escalar . Fazendo uma analogia se g e f fosse uma reta r e s por exemplo teríamos duas retas paralelas . Pense assim ...


Ah quero deixar bem claro que eu disse acima é verdadeiro se for uma função linear . ok .

em relação ao seu exercício ,

f(x) = a + 2^{bx+c}

pelo enunciado sabemos que :

f(1) = 0--------------------- i)

f(0) = -3/4 ---------------------ii)

i) Temos que :f(1)= 0 se e somente se a= -1 (porque ? Resposta: deixo a você refletir e chegar a conclusão ,ok. ) e b +c = 0 , ou seja :b = -c .

ii)f(0) = -3/4 = a + 2^b

De i) em ii) obtemos :

- 1+2^{c} = -3/4

4( - 1+2^{c}) = 4(-3/4)

- 4+2^{c+2} = -3

4 - 4+2^{c+2} = -3 +4

2^{c+2} = 1

2^{c+2} = 2/2

2^{c+2} = 2^{0} , portanto c =-2


Daí , abc = (-1)(2)(-2) = 4
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.