por Pad » Ter Jul 10, 2012 20:30
Boa noite =)
Recentemente postei esta pergunta em um site :
" Sejam as funções reais f e g dadas por f(x) = ?x-2 e g(x) ?6-x / ³?x-3 . Sendo o conjunto A o domínio da função f e o conjunto B o domínio da função g, a soma dos valores inteiros do conjunto A ? B é igual a ... "
E obtive a seguinte resposta :
" Temos duas funções e queremos a soma dos valores inteiros do conjunto C, sendo que:
C = Domínio da função f(x) ? Domínio da função g(x)
Ou melhor:
C = A ? B
C será um conjunto com números reais, ou seja, C pode conter uma infinidade de números. Mas o exercício quer aqueles números reais que sejam inteiros.
Como o próprio exercício disse A é o domínio de f(x), ou seja, é o conjunto dos valores que x pode assumir para que f(x) exista no campo real:
f(x) = ?(x - 2)
?(x - 2) ? não pode ter radical negativo! (entraria no campo imaginário)
x - 2 ? 0
OBS.: Seu professor errou aqui, ele disse que x - 2 > 0, na verdade x = 2 é válido para essa função.
x ? 2
A = { x e IR / x ? 2 } ou melhor A = [2, + ?)
(seu professor fez esse primeiro porque ele quis, pronto)
Já B é o conjunto dos valores possíveis de x para que g(x) exista:
g(x) = ?(6 - x) / ³?(x - 3)
Primeiro fazemos o numerador (porque eu quero, não há um motivo específico):
6 - x ? 0
OBS.: Ele também errou aqui, seu professor acusou que 6 - x > 0, mas x = 6 também é válido! g(6) = 0 o que trata de um número real.
x ? 6
Agora o denominador
x - 3 ? 0
x ? 3
B = { x e IR / x ? 3 e x ? 6 } ou seja B = (- ? , 6] - {3}
A intersecção dos conjuntos [2, + ?) com ( (- ? , 6] - {3} ) gera o conjunto C:
C = [2 , 6] - {3}
Os inteiros de C são {2, 4, 5, 6} (seu professor obteve {4, 5} que é o resultado errado)
Resposta é: 2 + 4 + 5 + 6 = 17 "
Espero que não tenha ficado muito confuso.
O ponto em questão é que eu não entendi algumas ( muitas ) coisas da resolução feita.
Por exemplo, por que x - 2 ? 0 ?
Qual o critério usado para determinar que o x-3 é diferente de zero, ao contrário do 6 e do 2 ?
Desculpem a pergunta tola.
-
Pad
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Jul 10, 2012 20:25
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Ter Jul 10, 2012 21:39
Veja que se x-2 assumir valores menores qe zero, isto é, negativos a função f não se define para os reais.
Suponha x=1. Assim, x-1 = 1-2 = -1. Agora a raíz quadrada de -1 não existe no conjunto Real. Logo a função f não se define para x=1. Assim, esse valor deve ser excluído de seu domínio assim como todos os outros tais que tornem x-2 negativo!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função simples (UFF-RJ)
por guijermous » Ter Fev 16, 2010 12:08
- 2 Respostas
- 1847 Exibições
- Última mensagem por guijermous

Ter Fev 16, 2010 12:40
Funções
-
- Função simples
por Striker694 » Qui Jun 30, 2016 23:30
- 1 Respostas
- 3902 Exibições
- Última mensagem por adauto martins

Qui Jul 07, 2016 11:49
Funções
-
- Função simples
por esdraslima » Sáb Jul 09, 2016 02:00
- 1 Respostas
- 2130 Exibições
- Última mensagem por DanielFerreira

Sáb Jul 09, 2016 12:32
Funções
-
- função simples de derivada
por miumatos » Dom Mar 18, 2012 13:06
- 2 Respostas
- 2156 Exibições
- Última mensagem por miumatos

Dom Mar 18, 2012 15:29
Cálculo: Limites, Derivadas e Integrais
-
- [Função Simples] Comparando f(x) e g(x)
por Rike Morais » Sex Jul 08, 2016 16:41
- 3 Respostas
- 2924 Exibições
- Última mensagem por Daniel Bosi

Sex Jul 08, 2016 17:44
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.