• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas com calculo e funções

Problemas com calculo e funções

Mensagempor Teh_eng » Sex Jul 06, 2012 19:06

No planejamento de um cafe-restaurante estima-se que se houver lugares para 40 a 80 pessoas o
lucro bruto diario sera de $ 8 por lugar. Contudo, se a capacidade de lugares esta acima de 80, o
lucro bruto diario de cada lugar ira decrescer $ 0,04 vezes o numero de lugares acima de 80. Qual
deve ser a capacidade de lugares necessaria para se obter o maximo lucro bruto diario?
Ele sugere o uso de derivada.
Bem começamos o exercicio assim:

se    40\leq x \leq 80 ,   L(x): 8x

e

x \geq 80 , L(x):  8x - 0.04(80-x)

Maas como calcular a capacidade de lugares para obter o lucro maáximo se o gráfico da função L(x) é sempre decrescente? ;s Help. >>.<<
Teh_eng
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 03, 2012 12:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduando em Eng. Elétrica
Andamento: cursando

Re: Problemas com calculo e funções

Mensagempor e8group » Sáb Jul 07, 2012 11:55

Teh_eng escreveu:No planejamento de um cafe-restaurante estima-se que se houver lugares para 40 a 80 pessoas o
lucro bruto diario sera de $ 8 por lugar
Olhando bem rápido ,considerando apenas para 40\leq x\leq 80 ,temos (80-x)(40-x) -8 = l(x) cujo Máx. de L(x) é obtido com x = 60 .

Infelizmente estou sem tempo pra analisar o restante ,mais tarde eu olho o mesmo com mais calma ....
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Problemas com calculo e funções

Mensagempor MarceloFantini » Dom Jul 08, 2012 00:36

Este enunciado foi um tanto quanto mal-formulado, mas vamos tentar. A função lucro será dada por

L(x) = \begin{cases} 8x, \text{ se } 40 \leq x \leq 80 \\ (8-0,04(x-80))(x-80) + 640, \text{ se } x \geq 80. \end{cases}

Daí, derivando e igualando a zero vemos que o máximo da função será em x=180 e seu valor será de 1040.

Portanto, a capacidade necessária para obter o máximo de lucro é de 180 lugares.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Problemas com calculo e funções

Mensagempor Teh_eng » Dom Jul 08, 2012 18:42

Obrigado! :D
Teh_eng
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 03, 2012 12:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduando em Eng. Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}