• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções - provar propriedade

Funções - provar propriedade

Mensagempor emsbp » Sáb Jul 07, 2012 17:59

Boa tarde.
O exercício é o seguinte: «Considere uma função real de varável real contínua de domínio [a,b]. Prove que a média aritmática de quaisquer dois valores da função é também um valor da função.»
Comecei por calcular a média aritmética dos valores f(a) e f(b): \frac{f(a)+f(b)}{2}. Sei que temos que usar o teorema de Bolzano ou o seu corolário, mas a partir daí não sei como fazer.
Peço ajuda.
Obrigado.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Funções - provar propriedade

Mensagempor MarceloFantini » Sáb Jul 07, 2012 21:57

Note que f(a) \leq \frac{f(a)+f(b)}{2} \leq f(b), assumindo f(a) \leq f(b). Pelo teorema do valor intermediário, existe c \in (a,b) tal que f(c) = \frac{f(a) +f(b)}{2}.

Outra forma é considerar g(x) = f(x) - \frac{(f(a)+f(b))}{2}, então g(a) = \frac{2f(a) -f(a) -f(b)}{2} = \frac{f(a) - f(b)}{2} < 0 e g(b) = \frac{f(b)-f(a)}{2} > 0, pelo teorema de Bolzano existe c \in (a,b) tal que g(c) = 0, implicando f(c) - \frac{(f(a) + f(b))}{2} = 0.

Importante perceber que podemos assumir sem perda de generalidade que f(a) \leq f(b). Se assumíssemos que f(a) \geq f(b) a primeira resolução não mudaria nada, enquanto que na segunda a única diferença seria que g(a) > 0 e g(b) < 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Funções - provar propriedade

Mensagempor emsbp » Dom Jul 08, 2012 18:27

Ok. Muito obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.