• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Quociente (Módulo)

Inequação Quociente (Módulo)

Mensagempor Rafael16 » Sex Jul 06, 2012 12:43

Olá pessoal, não consegui resolver essa inequação \left|\frac{x - 2}{x + 2} \right| \geq 1

Minha resolução foi a seguinte:

\left|\frac{x - 2}{x + 2} \right| \geq 1

Para(I)

\frac{x - 2}{x + 2} \geq 1

\frac{-4}{x + 2}\geq 0 \rightarrow cheguei nesse resultado

Colocando na reta real achei x < -2


Para(II)

\frac{x - 2}{x + 2} \leq -1

\frac{2x}{x + 2} \leq 0 \rightarrow cheguei nesse resultado

Colocando na reta real achei -2 < x\leq 0

Fazendo a intersecção (I ? II) achei como solução S=\phi

Resposta certa: {x ? ?|x?0 e x ? -2}
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Quociente (Módulo)

Mensagempor Russman » Sex Jul 06, 2012 17:24

Ok, pense assim:

Faça \frac{x-2}{x+2}=y.

Se \left | y \right |\geq 1, então -1 \leq y \leq 1 e portanto -1 \leq \frac{x-2}{x+2} \leq 1.

Agora,

-1 \leq \frac{x-2}{x+2} \leq 1 \Rightarrow -x-2\leq x-2\leq x+2\left\ \Rightarrow \left\{\begin{matrix}
2x\leq 0 \Rightarrow x\leq 0\\ 
-2\leq 2
\end{matrix}\right.

Como a segunda afirmação é verdadeira, então

S = (-\infty, -2)\cup (-2 ,0]=  \left \{  x \in \mathbb{R} \setminus  -2 \neq x \leq 0  \right \}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.