por Tulio » Sex Jul 06, 2012 02:03
Olá,
Tive muito problema para entender por que o limite abaixo não existe:
![\lim_{x\rightarrow 1}[1/(x-1)]-[3/(1-x^3)] \lim_{x\rightarrow 1}[1/(x-1)]-[3/(1-x^3)]](/latexrender/pictures/ec9d923b164ba9538be4651036f04f10.png)
Desenvolvendo o denominador chego a expressão:
porém não sei mais o que fazer a partir daqui.
Segundo me disseram,nesta parte você têm que dividi-lo em limites laterais,mas como nem têm módulo,fiquei confuso.
Agradeço desde já.
-
Tulio
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Jul 06, 2012 01:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por e8group » Sex Jul 06, 2012 10:47
Tulio , note que :

colocando em evidência

,obtemos :
![\lim_{x\to 1}\left(\frac{1}{x}\left[\frac{1-4x^{-3}-3x^{-2}}{1-x^{-3}-x^{-1}+x^{-4}} \right]\right)=\infty \lim_{x\to 1}\left(\frac{1}{x}\left[\frac{1-4x^{-3}-3x^{-2}}{1-x^{-3}-x^{-1}+x^{-4}} \right]\right)=\infty](/latexrender/pictures/0dc22b00504a9317260ba7ac067c12b7.png)
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Tulio » Sex Jul 06, 2012 16:21
Obrigado pela resposta Santhiago,mas esse limite não existe.
Tanto que se você fizer uma analise do gráfico dessa função por exemplo no wolfram ou winplot,
http://www.wolframalpha.com/input/?i=%2 ... %5E3%29%29 Você percebe que na região do 1,os limites laterais são diferentes.
O limite pela direita tende a

O limite pela esquerda tende a

Logo,o limite total não deveria existir.
-
Tulio
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Jul 06, 2012 01:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Russman » Sex Jul 06, 2012 16:33
Tanto

quanto

são deslocamentos efetuados em

. Pense nisso!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6480 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4562 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4853 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7040 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4270 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.