• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor Rafael16 » Qui Jul 05, 2012 12:01

Na inequação \left|\frac{x - 4}{3x - 1} \right| \geq 2

Para (I):
\frac{x - 4}{3x - 1}\geq 2

Para (II):
\frac{x - 4}{3x - 1} \leq -2

Depois faz a UNIÃO das soluções de cada inequação que fica
S = {x\in\Re\left|\frac{-2}{5} \leq x \leq \frac{6}{7} e x\neq\frac{1}{3}}

Na inequação \left|\frac{2x + 3}{x - 1} \right| < 4
A solução é
S= {x\in\Re| x < \frac{1}{6} ou x > \frac{7}{2}}

O que eu não entendi foi que na primeira inequação, para achar a solução, usa-se a UNIÃO, e na segunda inequação usa-se a INTERSECÇÃO.Por que não pode usar união?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Modular

Mensagempor Russman » Qui Jul 05, 2012 13:20

Para a primeira equação, ou

\frac{x-4}{3x-1} \geq 2

ou

\frac{x-4}{3x-1} \geq -2.

Da primeira, x\geq -\frac{2}{5}. E da segunda, x\leq \frac{6}{7}.

Assim, se você desenhar os intervalos vera que se unem de forma que {x \in \Re / x \in [ -\frac{2}{5} ,  \frac{1}{3}) \cup (\frac{1}{3} ,\frac{6}{7}]}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Inequação Modular

Mensagempor Russman » Qui Jul 05, 2012 13:33

Na segunda as soluções são x > \frac{7}{2} e x < \frac{1}{6}.

Unindo os intervalos, temos

x \in \Re / x \in ( -\infty ,  \frac{1}{6}) \cup (\frac{7}{2} ,\infty)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)