• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequacao

inequacao

Mensagempor bmachado » Dom Jul 01, 2012 19:56

O conjunto solução da inequação \frac{\left({-x}^{2}+ x - 20 \right)^{3}}{{x}^{2}\left(x -1 \right)^{5}}< 0 e o intervalo
Gabarito (1, infinito)
ObriGaDo pela colaboracao, poiS, eStou aprenDenDo eSSe conteuDo "Sozinho"
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: inequacao

Mensagempor e8group » Dom Jul 01, 2012 20:49

bmachado ,Tudo bem ?

"Grosso modo " ...

bmachado escreveu:O conjunto solução da inequação \frac{(-x^2+x-20)^3}{x^2(x-1)^5}< 0


Para \frac{(-x^2+x-20)^3}{x^2(x-1)^5} ser menor que zero tem que acontecer duas situações ,


(-x^2+x-20) < 0 e {x^2(x-1)^5 > 0 ou

(-x^2+x-20) > 0 e {x^2(x-1)^5 < 0

Como (-x^2+x-20) < 0 para todo x real então :{x^2(x-1)^5 > 0 ou sejax > \therefore x > 1

solução : (1,\infty)
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: inequacao

Mensagempor bmachado » Seg Jul 02, 2012 16:00

santhiago escreveu:bmachado ,Tudo bem ?

"Grosso modo " ...

bmachado escreveu:O conjunto solução da inequação \frac{(-x^2+x-20)^3}{x^2(x-1)^5}< 0


Para \frac{(-x^2+x-20)^3}{x^2(x-1)^5} ser menor que zero tem que acontecer duas situações ,


(-x^2+x-20) < 0 e {x^2(x-1)^5 > 0 ou

(-x^2+x-20) > 0 e {x^2(x-1)^5 < 0

Como (-x^2+x-20) < 0 para todo x real então :{x^2(x-1)^5 > 0 ou sejax > \therefore x > 1

ObriGaDo, acHei q teria q reSolver oS parenteSeS

solução : (1,\infty)
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: