• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções exponenciais - Desintegração radioativa

Funções exponenciais - Desintegração radioativa

Mensagempor emsbp » Sáb Jun 30, 2012 17:46

Boa tarde.
O problema é o seguinte: «Admita que o carbono 14 sofre desintegração radioativa de acordo com a fórmula Q(t) ={Q}_{0}{e}^{-0.00012t}, com t medido em anos.
Uma amostra vegetal descoberta numa gruta pré-histórica contém apenas 20% do carbono 14 esperado em plantas vivas. Determine a idade aproximada da amostra.»

Ora, a meu ver, se a amostra apenas contém 20%, quer dizer que a desintegração foi de 80%. Logo Q(t)= 0.8. A questão é como vou determinar {Q}_{0}.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Funções exponenciais - Desintegração radioativa

Mensagempor MarceloFantini » Sáb Jun 30, 2012 21:48

Estou imaginando que Q(t) represente a quantidade restante de carbono no instante t. Pelo enunciado você sabe que resta apenas 20% do inicial, significa que Q(t_0) = 0,2Q_0. Agora faça 0,2Q_0 = Q_0 \cdot e^{-0,00012t_0} e encontre t_0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.