• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Composta de uma relação.

Composta de uma relação.

Mensagempor trixitium » Sáb Jun 23, 2012 21:21

Estou resolvendo um livro meio antigo de introdução às estruturas algébricas. Em um exercício é pedido a composta das relações

x^{2}+y^{2}= 4 e y = 2x (sobre R)

Alguém poderia me falar qual é a composta final? Alguém sabe qual é a tag em latex para o conjunto dos reais?

Obrigado
trixitium
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 23, 2012 21:10
Formação Escolar: GRADUAÇÃO
Área/Curso: exatas
Andamento: formado

Re: Composta de uma relação.

Mensagempor MarceloFantini » Dom Jun 24, 2012 02:36

O símbolo é
Código: Selecionar todos
\mathbb{R}
Se y=2x, é razoável tentar fazer x^2 +y^2 = x^2 +(2x)^2 = 4. Tente resolver daí.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}