• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Demonstração

[Integrais] Demonstração

Mensagempor Henrique Bueno » Qua Jun 20, 2012 16:37

O exercício é o seguinte:

Prove que
\int\limits_{0}^{\pi}~cos^{2p+1}(x)dx=0 com p pertencente a Z.
(sugestão: faça x=\pi-u)

eu tentei usar a sugestão e cai na mesma coisa de antes porém na variável u. Tentei dizer que u=senx e encontrei a seguinte integral:

\int\limits_{0}^{\pi}~(1-u^2)^pdu

porém dai eu não consigo sair. Por favor, me ajudem!
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Integrais] Demonstração

Mensagempor Russman » Qua Jun 20, 2012 21:29

A demonstração é relativamente simples. Veja que efetuando a mudança de variável temos

\int_{0}^{\pi }(cos(x))^{2p+1}dx = \int_{u(0)}^{u(\pi )}(cos(\pi -u))^{2p+1}(-du)=-\int_{\pi }^{0}(cos(\pi-u ))^{2p+1}du.

Agora utilizando a propriedade de inversão de limites de integração e o fato que

cos(\pi -u) =cos(u-\pi )=-cos(u), temos , portanto

-\int_{\pi }^{0}(cos(\pi-u ))^{2p+1}du = \int_{0 }^{\pi}(cos(u-\pi ))^{2p+1}du = -\int_{0 }^{\pi}(cos(u))^{2p+1}du,

uma vez que o sinal de menos sobrevive as potências ímpares.

Agora veja que, do início,

\int_{0}^{\pi }(cos(x))^{2p+1}dx = -\int_{0 }^{\pi}(cos(u))^{2p+1}du.

Note que x e u são, nos processos de integração, variáveis "mudas", isto é, como efetua-se uma integração definida as variáveis, no resultado final, não aparecem explicitamente. Logo, podemos tomar x=u=t. Assim,

\int_{0}^{\pi }(cos(t))^{2p+1}dt = -\int_{0 }^{\pi}(cos(t))^{2p+1}dt\Rightarrow 2\int_{0 }^{\pi}(cos(t))^{2p+1}dt=0.

e, portanto,

\int_{0 }^{\pi}(cos(t))^{2p+1}dt=0

c.q.d
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)