• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular o limite de

Calcular o limite de

Mensagempor nowfeer » Seg Jun 18, 2012 01:22

Calcular o limite de \lim_{x\rightarrow0}\frac{\sqrt[]{sin(x)}}{\sqrt[]{1-cos(x)}}

Eu cheguei com o valor igual a zero depois q trabalhei com esta expressão , e qria saber se esta certo.

DESCULPA é sem a RAIZ na parte de cima.

ps: descobri este forum hoje , e ja aprendi 2 coisas q nao sabia , amanha vou ter prova e ja me ajudaram muito ..
nowfeer
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jun 18, 2012 00:21
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Eng. Eletronica
Andamento: cursando

Re: Calcular o limite de

Mensagempor e8group » Seg Jun 18, 2012 18:22

Nowfeer  , Boa tarde .

\lim_{x\to 0}\frac {sin(x)}{\sqrt{(1-cos(x))}}= \lim_{x\to 0}\frac {sin(x)}{\sqrt{(1-cos(x))}}\frac{\sqrt{(1+cos(x))}}{\sqrt{(1+cos(x))}} = \\\\\\ =\lim_{x\to 0} \frac{sin(x)\sqrt{(1+cos(x)})}{|sin(x)|} .

Pela definição de modulo temos que :

\lim_{x\to 0^{-}}\frac {sin(x)}{\sqrt{(1-cos(x))}} = - \sqrt{2} .
\lim_{x\to 0^{+}}\frac {sin(x)}{\sqrt{(1-cos(x))}} =  \sqrt{2} .

Note que neste caso particular não existe o limite já que os limites laterias diferem .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Calcular o limite de

Mensagempor nowfeer » Ter Jun 19, 2012 21:36

muito obrigado , me ajudou muito .
Abraço ;)
nowfeer
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jun 18, 2012 00:21
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Eng. Eletronica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}