por thyago_1 » Dom Jun 17, 2012 20:31
-
thyago_1
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jun 17, 2012 20:19
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Programação de Jogos Digitais
- Andamento: cursando
por e8group » Dom Jun 17, 2012 22:24
Boa noite thyago_1 ,Como você tentou resolver ? por favor ,mostre seu desenvolvimento para assim melhor podermos ajuda-lo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por thyago_1 » Dom Jun 17, 2012 22:38
Olá Santhiago, recebi este exercicío e estou tentando resolver o mesmo no momento. Postei ele aqui, para que pudesse ter ajuda da galera na resolução do mesmo. De qualquer forma terei a resolução em mãos daqui a 2 dias e caso ninguém consiga resolver por aqui, eu posto a resolução.
Abraços!
-
thyago_1
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jun 17, 2012 20:19
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Programação de Jogos Digitais
- Andamento: cursando
por e8group » Qua Jun 20, 2012 16:48
i)
ii)

Primeiramente para o sistema ter solução temos

e

> 0 .
Assim ,
![7(xy)^{1/3} - 3(xy)^{1/2} =7[(xy)^{1/6} ]^2 -3[(xy)^{1/6}]^3 = 4 7(xy)^{1/3} - 3(xy)^{1/2} =7[(xy)^{1/6} ]^2 -3[(xy)^{1/6}]^3 = 4](/latexrender/pictures/200503cf970e3af1e5f7a4af40f1b613.png)
.
Fazendo

.Temos :
Da eq. i) temos :

,Lembrando que

e

> 0 ,ou seja :

, pela definição de modulo ,temos :

e

.
Solução :

e

.
Se não cometi algum erro estar certo ....
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4499 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- Sistema de equações
por Cleyson007 » Sex Set 12, 2008 12:47
- 6 Respostas
- 5544 Exibições
- Última mensagem por Cleyson007

Qua Jun 03, 2009 17:25
Sistemas de Equações
-
- Sistema de Equações
por Cleyson007 » Qua Mai 27, 2009 14:01
- 3 Respostas
- 3352 Exibições
- Última mensagem por Cleyson007

Qui Mai 28, 2009 17:51
Sistemas de Equações
-
- Sistema de equações
por Moreno1986 » Seg Mai 17, 2010 15:04
- 3 Respostas
- 3598 Exibições
- Última mensagem por Neperiano

Ter Mai 18, 2010 17:54
Sistemas de Equações
-
- Sistema de equações
por Moreno1986 » Sex Abr 23, 2010 13:54
- 1 Respostas
- 1558 Exibições
- Última mensagem por MarceloFantini

Sáb Abr 24, 2010 00:56
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.