• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do segundo grau

Equação do segundo grau

Mensagempor LuizCarlos » Sex Jun 15, 2012 16:14

Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

\frac{1}{4-x}+\frac{3}{8}=\frac{1}{x}

Estou tendo dificuldades para encontrar o m.m.c!

Tentei encontrar, achei: 4-x. Está certo esse m.m.c.

Tem esse exercício aqui também!

Determine dois números inteiros, positivos e consecutivos, cuja soma dos inversos seja \frac{7}{12}.

Tentei resolver dessa maneira:

\frac{1}{x}+\frac{1}{x+1}=\frac{7}{12}

Encontrei m.m.c = 12x
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Equação do segundo grau

Mensagempor Russman » Sex Jun 15, 2012 19:34

Bom, vou te dar uma dica q eu sempre sugiro aos meus alunos!

Na álbegra, é fato que

\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}

Ou seja, o M.M.C. dos denominadores serve para que se extraia a fração reduzida da operação. Mas se você não calcular o M.M.C. e simplismente "multiplicar em cruz" os denominadores vai estar "fazendo certo" da mesma forma.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equação do segundo grau

Mensagempor DanielFerreira » Sex Jun 15, 2012 20:46

LuizCarlos escreveu:Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

\frac{1}{4-x}+\frac{3}{8}=\frac{1}{x}

Estou tendo dificuldades para encontrar o m.m.c!

Tentei encontrar, achei: 4-x. Está certo esse m.m.c.


(4 - x) ___________ 8 ___________ x | (4 - x)

1 _______________ 8 ___________ x | 8

1 _______________ 1 ___________ x | x

1 _______________ 1 ___________ 1 |

MMC(4 - x, 8, x) = 8x(4 - x)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equação do segundo grau

Mensagempor DanielFerreira » Sex Jun 15, 2012 20:52

LuizCarlos escreveu:Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

Tem esse exercício aqui também!

Determine dois números inteiros, positivos e consecutivos, cuja soma dos inversos seja \frac{7}{12}.

Tentei resolver dessa maneira:

\frac{1}{x}+\frac{1}{x+1}=\frac{7}{12}

Encontrei m.m.c = 12x


(x + 1)___________ 12 ___________ x | (x + 1)

1 _______________ 12 ___________ x | 12

1 _______________ 1 ____________ x | x

1 _______________ 1 ___________ 1 |

MMC(x + 1, 12, x) = 12x(x + 1)

Luiz Carlos,
lembre-se que o MMC entre os números primos entre si é igual ao produto entre eles, veja:
MMC(2,3,5) = 2 . 3 . 5
MMC(2,3,5) = 30
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equação do segundo grau

Mensagempor LuizCarlos » Sáb Jun 16, 2012 13:30

Russman escreveu:Bom, vou te dar uma dica q eu sempre sugiro aos meus alunos!

Na álbegra, é fato que

\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}

Ou seja, o M.M.C. dos denominadores serve para que se extraia a fração reduzida da operação. Mas se você não calcular o M.M.C. e simplismente "multiplicar em cruz" os denominadores vai estar "fazendo certo" da mesma forma.


Obrigado, consegui entender Russman!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Equação do segundo grau

Mensagempor LuizCarlos » Sáb Jun 16, 2012 13:31

danjr5 escreveu:
LuizCarlos escreveu:Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

\frac{1}{4-x}+\frac{3}{8}=\frac{1}{x}

Estou tendo dificuldades para encontrar o m.m.c!

Tentei encontrar, achei: 4-x. Está certo esse m.m.c.


(4 - x) ___________ 8 ___________ x | (4 - x)

1 _______________ 8 ___________ x | 8

1 _______________ 1 ___________ x | x

1 _______________ 1 ___________ 1 |

MMC(4 - x, 8, x) = 8x(4 - x)



Valeu amigo danjr5, consegui entender, não sei como consigo ficar em dúvida em m.m.c já fiz tantos exercícios desses!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.