• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determine os valores - Tangente

Determine os valores - Tangente

Mensagempor rodsales » Dom Jun 28, 2009 20:25

Os valores de \alpha, com 0\leq x\leq\pi e \alpha \neq \pi/2, dada por f(x) = 4 x^2 - 4x - tg^2\alpha, assume valor mínimo igual a -4 são:

Eu cheguei ao resultado de \pi/3 mas não entendi por que o livro deu a resposta também de 2\pi/3.


Grato,
Aguardo respostas.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Determine os valores - Tangente

Mensagempor DanielFerreira » Qui Jul 30, 2009 18:45

- ? = - 4 * 4a
? = 16a
16 + 16 * tg² a = 16*4

1 + tg² a = 4

tg² a = 3

tg a = ?3

a = 60°

180° ---- ?
60° ----- k

180k = 60?
18k = 6?
k = ?/3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Determine os valores - Tangente

Mensagempor Molina » Qui Jul 30, 2009 20:07

Boa noite.

Realmente são as duas soluções.
A Báskhara feita pelo nosso amigo a cima está correta até o seguinte ponto:

danjr5 escreveu:- ? = - 4 * 4a
? = 16a
16 + 16 * tg² a = 16*4

1 + tg² a = 4

tg² a = 3


A partir daqui faltou ele considerar que:

tg^2\alpha=3

tg\alpha=\pm\sqrt{3}

Ou seja, mais ou menor raiz de três.

Considerando o intervalo dado temos que tg\alpha=\sqrt{3}\Rightarrow\alpha=\frac{\pi}{3}

e tg\alpha=-\sqrt{3}\Rightarrow\alpha=\frac{2\pi}{3}

Na dúvida faça o ciclo trigonométrico que você vai visualizar com facilidade.


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Determine os valores - Tangente

Mensagempor DanielFerreira » Sex Jul 31, 2009 13:09

ok.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59