• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do 2º grau] equações fracionárias

[Equação do 2º grau] equações fracionárias

Mensagempor smlspirit » Sex Jun 15, 2012 01:42

Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado
smlspirit
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mai 18, 2012 01:00
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: formado

Re: [Equação do 2º grau] equações fracionárias

Mensagempor Russman » Sex Jun 15, 2012 04:33

smlspirit escreveu:Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado


Seja esse número x. Como ele tem apenas dois algarismos, sejam eles a e b, podemos escrever que x=10a+b. Concorda?

Assim, vamos ao enunciado! Ele nos dá duas informações:

\left\{\begin{matrix}
\frac{10a+b}{(\frac{b}{a})}=18 \\ 
a+b=9
\end{matrix}\right.

Eu acho interessante fato de que se a soma dos algarismos de um número é 9 então este é múltiplo de 9. Veja que isto nos dá apenas algumas combinações específicas para (a,b). Assim, podíamos fazer tentativas e verificar qual par satisfaz a equação 1. Maaaaaas, vamos recorrer a boa e confiável álgebra.

Da equação 1, podemos desenvolver que

\frac{10a+b}{(\frac{b}{a})}=18\Rightarrow 10a + b = \frac{18b}{a} \Rightarrow 10a^{2}+ab = 18b\Rightarrow 10a^{2}+b(a-18)=0.

Pela equação 2 sabemos que a e b se relacionam seguindo a+b=9. Portanto, se tomarmos b=9-a e substituirmos na equação acima teremos uma equação de 2° grau na incógnita a!

10a^{2}+b(a-18)=0\Rightarrow 10a^{2}+(9-a)(a-18)=0\Rightarrow 10a^{2}-162+27a-a^{2}=0\Rightarrow 9a^{2}+27a-162=0\Rightarrow \left\{\begin{matrix}
a_{1}=3\\ 
a_{2}=-6
\end{matrix}\right.

Como a deve ser um algarismo, a única solução válida é a=3. Agora, como eu sei que 4\times9=36 é fácil imaginar que b=6, pelo argumento que eu dei acima. Claro, b=9-a=9-3=6.

Portanto, o seu número é 36!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.