por smlspirit » Sex Jun 15, 2012 01:42
Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado
-
smlspirit
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mai 18, 2012 01:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: formado
por Russman » Sex Jun 15, 2012 04:33
smlspirit escreveu:Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado
Seja esse número

. Como ele tem apenas dois algarismos, sejam eles

e

, podemos escrever que

. Concorda?
Assim, vamos ao enunciado! Ele nos dá duas informações:

Eu acho interessante fato de que se a soma dos algarismos de um número é 9 então este é múltiplo de 9. Veja que isto nos dá apenas algumas combinações específicas para (a,b). Assim, podíamos fazer tentativas e verificar qual par satisfaz a equação 1. Maaaaaas, vamos recorrer a boa e confiável álgebra.
Da equação 1, podemos desenvolver que

.
Pela equação 2 sabemos que a e b se relacionam seguindo

. Portanto, se tomarmos

e substituirmos na equação acima teremos uma equação de 2° grau na incógnita a!

Como

deve ser um algarismo, a única solução válida é

. Agora, como eu sei que

é fácil imaginar que

, pelo argumento que eu dei acima. Claro,

.
Portanto, o seu número é 36!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- EQUAÇÕES FRACIONARIAS DO 2° GRAU [AJUDA URGENTE!!!]
por rayanne_ » Ter Mai 13, 2014 00:43
- 1 Respostas
- 1418 Exibições
- Última mensagem por Russman

Qua Mai 14, 2014 00:54
Equações
-
- [EQUAÇOES FRACIONARIAS] - AJUDA URGENTE!!
por mariaclarabg » Dom Set 09, 2012 20:39
- 2 Respostas
- 1314 Exibições
- Última mensagem por mariaclarabg

Dom Set 09, 2012 21:25
Equações
-
- [EQUAÇOES FRACIONARIAS] - agora de acordo com as regras
por mariaclarabg » Dom Set 09, 2012 21:24
- 2 Respostas
- 2307 Exibições
- Última mensagem por DanielFerreira

Seg Set 10, 2012 23:54
Equações
-
- equações de 2º grau
por Lismara » Seg Ago 31, 2009 23:25
- 4 Respostas
- 2708 Exibições
- Última mensagem por Lismara

Ter Set 01, 2009 21:42
Sistemas de Equações
-
- Equações 2º Grau
por Quatroemes » Dom Mar 21, 2010 20:53
- 2 Respostas
- 2481 Exibições
- Última mensagem por Quatroemes

Seg Mar 22, 2010 11:34
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.