• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Igualdades Trigonométricas] Demonstração das igualdades

[Igualdades Trigonométricas] Demonstração das igualdades

Mensagempor rako » Qui Jun 14, 2012 17:44

Boa tarde. Tenho 5 exercícios para entregar até sábado de manhã envolvendo igualdades trigonométricas, dois consegui resolver porém os outros três já tentei de várias formas não consegui determinar as igualdades... Transformo, utilizo a relação fundamental da trigonometria mas chega num determinado ponto e parece que trava... Por isso apreciaria uma ajuda :y:

Lá vão elas:

1. {(sec \alpha + tg \alpha)}^{2} = \frac{1 - sen \alpha}{1 + sen \alpha}

2. \frac{sec \alpha + tg \alpha}{cos \alpha + cotg \alpha} = tg\alpha.sec\alpha

3. {cos}^{4}\alpha - {sen}^{4}\alpha = 2 {cos}^{2}\alpha - 1

Desde já agradeço. Grande abraço a todos.
rako
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jun 14, 2012 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Igualdades Trigonométricas] Demonstração das igualdades

Mensagempor DanielFerreira » Qui Jun 14, 2012 19:57

Rako,
seja bem vindo ao Fórum!
rako escreveu:Boa tarde. Tenho 5 exercícios para entregar até sábado de manhã envolvendo igualdades trigonométricas, dois consegui resolver porém os outros três já tentei de várias formas não consegui determinar as igualdades... Transformo, utilizo a relação fundamental da trigonometria mas chega num determinado ponto e parece que trava... Por isso apreciaria uma ajuda :y:

Lá vão elas:

1. {(sec \alpha + tg \alpha)}^{2} = \frac{1 - sen \alpha}{1 + sen \alpha}


(sec\alpha + tg\alpha)^2 =


\left( \frac{1}{cos\alpha} + \frac{sen\alpha}{cos\alpha}\right)^2 =


\left( \frac{1 + sen\alpha}{cos\alpha}\right)^2 =


\frac{(1 + sen\alpha)^2}{cos^2\alpha} =


\frac{(1 + sen\alpha)^2}{1 - sen^2\alpha}


\frac{(1 + sen\alpha)^2}{(1 + sen\alpha)(1 - sen\alpha)} =


\frac{(1 + sen\alpha)}{(1 - sen\alpha)}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Igualdades Trigonométricas] Demonstração das igualdades

Mensagempor DanielFerreira » Qui Jun 14, 2012 20:02

rako escreveu:Boa tarde. Tenho 5 exercícios para entregar até sábado de manhã envolvendo igualdades trigonométricas, dois consegui resolver porém os outros três já tentei de várias formas não consegui determinar as igualdades... Transformo, utilizo a relação fundamental da trigonometria mas chega num determinado ponto e parece que trava... Por isso apreciaria uma ajuda :y:

Lá vão elas:

2. \frac{sec \alpha + tg \alpha}{cos \alpha + cotg \alpha} = tg\alpha.sec\alpha

Faça as devidas substituições, assim como na 1.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Igualdades Trigonométricas] Demonstração das igualdades

Mensagempor DanielFerreira » Qui Jun 14, 2012 20:07

rako escreveu:Boa tarde. Tenho 5 exercícios para entregar até sábado de manhã envolvendo igualdades trigonométricas, dois consegui resolver porém os outros três já tentei de várias formas não consegui determinar as igualdades... Transformo, utilizo a relação fundamental da trigonometria mas chega num determinado ponto e parece que trava... Por isso apreciaria uma ajuda :y:

Lá vão elas:

3. {cos}^{4}\alpha - {sen}^{4}\alpha = 2 {cos}^{2}\alpha - 1

Desde já agradeço. Grande abraço a todos.

cos^4\alpha - sen^4\alpha =

(cos^2\alpha - sen^2\alpha)(cos^2\alpha + sen^2\alpha) =

(cos^2\alpha - sen^2\alpha)( 1) =

[cos^2\alpha - (1 - cos^2\alpha)] . 1 =

cos^2\alpha - 1 + cos^2\alpha =

2cos^2\alpha - 1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.