• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração

Demonstração

Mensagempor Guill » Qua Jun 13, 2012 09:09

Há pouco tempo, eu venho trabalhando em uma demonstração para a seguinte poposição:

''Se n é um número natural, entre n e 2n existe sempre pelo menos um primo.''


Eu consegui demonstrar isso fragmentando a demonstração em 2 partes:

* Se n não é primo (tenho certeza de que está certo)
* Se n é primo (tenho dúvidas a respeito da veracidade dessa parte)



A demonstração é assim:

Dentre os números naturais, podem haver números que satisfazem e que não satisfazem a proposição. Mas sabemos que , dentre os que não satisfazem, existe um que foi o primeiro de todos a não satisfazer. Vamos supor que esse número é n e que ele não seja primo.
Como ele é o primeiro, sabemos que (por hipótese) entre n e 2n não há primos. No entanto isso acarreta em um absurdo, pois o seu antecessor (n - 1) possui entre ele e 2(n - 1), apenas alguns números entre n e 2n e o próprio n que não é primo.
Daí ele passa a ser o primeiro. Esse absurdo prova a primeira parte.


Vamos supor que o primeiro de todos a não satisfazer a proposição seja o n-ésimo primo, ou seja, entre {p}_{n} e 2.{p}_{n} não existe um primo. Podemos, com isso, afirmar duas coisas:

{p}_{n+1} > {p}_{n} (óbvia)

{p}_{n+1}>2.{p}_{n} (O próximo primo está fora do intervalo)


Subtraíndo a primeira inequação da segunda, vemos o absurdo:

0>{p}_{n}





A questão é que eu não tenho certeza quanto á veracidade da segunda proposição. Além disso, pode-se ver claramente que a demonstração depende das duas demonstrações. Está correto ??
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.