• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mostra que:

Mostra que:

Mensagempor anamendes » Sáb Jun 09, 2012 19:12

Seja z= 1+i
Mostre que:

(2-z)^5 = -4+4i

Já tentei de diversas maneiras e não consegui... :(
anamendes
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Abr 28, 2012 08:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciências e tecnologias
Andamento: cursando

Re: Mostra que:

Mensagempor DanielFerreira » Sáb Jun 09, 2012 19:26

(2 - z)^5 =

(2 - 1 - i)^5 =

(1 - i)^5 =

(1 - i)^2(1 - i)^2(1 - i) =

(1 - 2i + i^2)(1 - 2i + i^2)(1 - i) =

(1 - 2i - 1)(1 - 2i - 1)(1 - i) =

(- 2i)(- 2i)(1 - i) =

4i^2(1 - i) =

4.(- 1)(1 - i) =

- 4(1 - i) =

- 4 + 4i
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Mostra que:

Mensagempor Russman » Sáb Jun 09, 2012 19:33

anamendes escreveu:Seja z= 1+i
Mostre que:

(2-z)^5 = -4+4i

Já tentei de diversas maneiras e não consegui... :(


Toma 2-z como um novo complexo! Por exemplo, 2-z = g. Assim, g = 2-1-i = 1-i.
Agora aplique em g^5 o tratamento

g^5 = lgl^5. (cos(5.w) + i.sin(5.w))

ond w = arctan(b/a) = arctan(-1) = -45° e lgl = V(1²+1²) = V2.

Logo,
g^5 = (V2)^5.(cos(-225) + i.sin(-225)) = 4V2.(-V2/2 + i(V2/2)) = -4+4i . c.q.d.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59