• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sequencia

Sequencia

Mensagempor Amparo » Dom Mar 09, 2008 16:26

Seja a Considere a seqüência an = n^5 + n^3 + n / n^3 - 1


(a) Determine os quatro primeiros termos da seqüência {an}? ;
Obs.: N = { 1, 2, 3, ... }
(b) Discuta, justificando todos os passos, se a seqüência converge ou não ;
Amparo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 09, 2008 10:19
Área/Curso: Estudante
Andamento: cursando

Re: Sequencia

Mensagempor admin » Qui Mar 13, 2008 12:53

Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Sequencia

Mensagempor Cah » Seg Jan 31, 2011 13:21

Por favor, me ajudem estou com dificuldades na resolução de um problema.Para estudarmos a taxa de crescimento de termos sucessivos, construímos a sequência bn = an+ 1/an .Assim sendo encontre b, tal que bn tenda a b.

Ou seja, mostre que b converge para 1 + ?5/2. Sei que tenho que fazer pelo lim bn = lim b (n + 1), mas já faz um bom tempo que não faço tal exercícios
Cah
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 23, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Sequencia

Mensagempor nietzsche » Sex Set 02, 2011 00:42

amparo,
divida os termos de an por n^3 em "cima e embaixo da fração" e tente calcular o limite, vc verá que an diverge. para calcular os primeiros termos basta trocar n pelos números 1, depois 2, depois 3, depois 4. para cada valor de n, vc tem um valor para an. por exemplo se n=0, então a0 = 0.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.