• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Analise Combinatoria

Analise Combinatoria

Mensagempor menezesandrew » Sex Mar 20, 2009 21:32

essa questão estou com dificuldades...

Usando uma vez a letra A, uma vez a letra B e n-2 vezes a letra C,
podemos formar 20 anagramas diferentes com n letras em cada anagrama.
Encontre o valor n.
menezesandrew
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 20, 2009 21:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino medio
Andamento: cursando

Re: Analise Combinatoria

Mensagempor Molina » Ter Mar 31, 2009 20:14

boa noite, menezes.

vamos fazer a seguinte analise:
caso haja 1 A, 1 B e 1 C. Assim temos os seguintes anagramas:
ABC
ACB
BAC
BCA
CAB
CBA

ou seja, 6 anagramas.

caso haja 1 A, 1 B e 2 C. Assim temos os seguintes anagramas:
ABCC
ACBC
ACCB
BACC
BCAC
BCCA
CABC
CBAC
CACB
CBCA
CCAB
CCBAn=5

ou seja, 12 anagramas.

podemos entao generalizar para \frac{(numerodeletras)!}{(numeroderepeticoes)!}

\frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20  \Rightarrow {n}^{2}-n-20=0

{n}_{1}=5 e {n}_{2}=-4

como n-2 tem que ser positivo, n=5

abraços. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Analise Combinatoria

Mensagempor bmachado » Sex Jun 08, 2012 00:17

Boa noite,

Alguem pode me explicar essa resolucao, pois, n entendi pq n! passou a n(n-1)(n-2) desculpe a ignorancia.Obrigado



Molina escreveu:boa noite, menezes.

vamos fazer a seguinte analise:
caso haja 1 A, 1 B e 1 C. Assim temos os seguintes anagramas:
ABC
ACB
BAC
BCA
CAB
CBA

ou seja, 6 anagramas.

caso haja 1 A, 1 B e 2 C. Assim temos os seguintes anagramas:
ABCC
ACBC
ACCB
BACC
BCAC
BCCA
CABC
CBAC
CACB
CBCA
CCAB
CCBAn=5

ou seja, 12 anagramas.

podemos entao generalizar para \frac{(numerodeletras)!}{(numeroderepeticoes)!}

\frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20  \Rightarrow {n}^{2}-n-20=0

{n}_{1}=5 e {n}_{2}=-4

como n-2 tem que ser positivo, n=5

abraços. :y:
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: Analise Combinatoria

Mensagempor Molina » Sáb Jun 09, 2012 14:15

Boa tarde, Machado.

bmachado escreveu:Boa noite,

Alguem pode me explicar essa resolucao, pois, n entendi pq n! passou a n(n-1)(n-2) desculpe a ignorancia.Obrigado



Molina escreveu:boa noite, menezes.

vamos fazer a seguinte analise:
caso haja 1 A, 1 B e 1 C. Assim temos os seguintes anagramas:
ABC
ACB
BAC
BCA
CAB
CBA

ou seja, 6 anagramas.

caso haja 1 A, 1 B e 2 C. Assim temos os seguintes anagramas:
ABCC
ACBC
ACCB
BACC
BCAC
BCCA
CABC
CBAC
CACB
CBCA
CCAB
CCBAn=5

ou seja, 12 anagramas.

podemos entao generalizar para \frac{(numerodeletras)!}{(numeroderepeticoes)!}

\frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20  \Rightarrow {n}^{2}-n-20=0

{n}_{1}=5 e {n}_{2}=-4

como n-2 tem que ser positivo, n=5

abraços. :y:


Respondendo sua dúvida, eu fiz n! = n \cdot (n-1) \cdot (n-2)! para simplificar com o termo do denominador que era (n-2)!.

E usei este artifício pela definição de fatorial, já que é uma sucessão de multiplicação pelo seus antecessores. O antecessor de n é (n-1); o antecessor de (n-1) é (n-2) e assim sucessivamente...

Qualquer dúvida avise. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59