• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sistemas de equaçoes

sistemas de equaçoes

Mensagempor silvia fillet » Qui Jun 07, 2012 20:50

Resolva o sistema por eliminação de Gauss, fazendo hipóteses sobre a se
necessário.

ax-5y+2z=1
3x-y+ z=0
x+2y+z=0
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: sistemas de equaçoes

Mensagempor MarceloFantini » Qui Jun 07, 2012 22:55

O que você tentou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: sistemas de equaçoes

Mensagempor silvia fillet » Qui Jun 07, 2012 23:55

Vou trocar a ordem das equações:
x+2y+z=0
3x-2y+z=0
ax-5y+2z=1


Multiplicando a primeira equação por - 3 e somando com a segunda teremos:
x+2y+z=0
0-8y-2z=0
ax-5y+2z=1

Para zerar o ax temos que considerar algumas hipóteses para a:
Considerando a um número positivo, temos que multiplicar a primeira equação por – a e somar com a terceira equação.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: sistemas de equaçoes

Mensagempor silvia fillet » Qui Jun 07, 2012 23:56

Vou trocar a ordem das equações:
x+2y+z=0
3x-2y+z=0
ax-5y+2z=1


Multiplicando a primeira equação por - 3 e somando com a segunda teremos:
x+2y+z=0
0-8y-2z=0
ax-5y+2z=1

Para zerar o ax temos que considerar algumas hipóteses para a:
Considerando a um número positivo, temos que multiplicar a primeira equação por – a e somar com a terceira equação.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?