• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida]Função Trigonométrica Inversa em Integral.

[Dúvida]Função Trigonométrica Inversa em Integral.

Mensagempor Jhonata » Qui Jun 07, 2012 18:06

O problema que estou trabalhando é: Calcule a integral: \int\limits_{0}^\frac{1}{2}~ \frac{arcsenx}{\sqrt{1-x^2}}  dx

Minha resolução: Fazendo u = arcsenx, du = \frac{1}{\sqrt{1-x^2}}, logo os novos limites de integração são: quando x = 0, u = 0 e quando x = \frac{1}{2}, u = \frac{\pi}{6}, assim: \int\limits_{0}^\frac{\pi}{6}~ u du
Calculando a integral definida, temos: \frac{u^2}{2} <(0)({\pi}{6})> (ou seja, de 0 à pi/6)

Substituindo os valores e segundo a parte dois do TFC, temos:

\frac {arcsen^2(\frac{\pi}{6})}{2} - \frac {arcsen^2(0)}{2} = ...

Eis então minha dúvida:
Se os valores de x já estão em "arco" para arcsenx, então que valores devo tomar pra achar o resultado final? :l
Desde já, grato!!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida]Função Trigonométrica Inversa em Integral.

Mensagempor MarceloFantini » Qui Jun 07, 2012 20:22

Você confundiu na hora de aplicar a segunda parte do teorema fundamental do cálculo. Se você está na variável u, então deve usar os limites de integração de u. Se voltar para x, deve usar os limites de integração de x. Ou seja, faça

\frac{u^2}{2} \Bigg\vert_0^{\frac{\pi}{6}} = \frac{\pi^2}{72}

ou

\frac{arcsen^2 \left( x \right)}{2} \Bigg\vert_0^{\frac{1}{2}} = \frac{arcsen^2 \left( \frac{1}{2} \right)}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Dúvida]Função Trigonométrica Inversa em Integral.

Mensagempor Jhonata » Qui Jun 07, 2012 20:40

Entendi! Muito obrigado Marcelo. (:
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 18 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59