• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor debeta56 » Dom Jun 03, 2012 11:39

Suponha que A e B são eventos com P(A) = 1/3, P(B) = 1/4 e P(A intersecção B) = 1/10. Determine:
a) P(A\B) (probabilidade do evento A assumindo que o evento B ocorreu)
b) P(B\A) (probabilidade do evento B assumindo que o evento A ocorreu)
c) P(A elevado c\B ) (probabilidade do evento A complementar assumindo que o evento B ocorreu)
d) P(A elevado a c\B elevado a c) probabilidade do evento A complementar assumindo que o evento B complementar ocorreu)
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: probabilidade

Mensagempor joaofonseca » Dom Jun 03, 2012 14:16

Primeira conclusão do enunciado é que os acontecimentos A e B não são independentes pois:

P(A) \cdot P(B)\neq P(A \cap B)

Deduzo que você já estudou a formula da probabilidade condicional:

P(A|B)=\frac{P(A \cap B)}{P(B)}

Pistas:

P(A)=P(A \cap B)+P(A \cap \bar{B})

P(\bar{A} \cap \bar{B})=1-P(A \cup B)

P(A \cup B)=P(A)+P(B)-P(A \cap B)
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: probabilidade

Mensagempor debeta56 » Dom Jun 03, 2012 14:47

Obrigado João isto eu sei mas infelizmente no forum em que estou não se tem liberdade de perguntar nada e felizmente aqui, em forum independentes pode-se ver aonde estou errando. Abraços.
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: probabilidade

Mensagempor nandabhz » Dom Jun 03, 2012 16:48

To em duvida nestas 3 questoes de estatisticas abaixo. Alguem poderia me ajudar a resolver? Já coloquei as respostas, porem nao consegui desenvolve-las. Desde já agradeço.

1- As vendas diárias de uma lanchonete seguem uma distribuição normal, com média de R$400,00 e desvio padrão igual a R$ 100,00. Calcule a probabilidade de que em um determinado dia o faturamento da lanchonete esteja entre R$ 380,00 e R$500,00. Resposta 42,06

2-Uma grande revista de negócios brasileira afirmou que o faturamento das indústrias de uma determinada região do país seria igual a R$820.000,00. Sabe-se que o desvio padrão populacional de todas as empresas desta região é igual a R$120.000,00. Um pesquisador independente analisou os dados de uma amostra formada por 19 empresas desta região, encontrando um faturamento médio de R$750.000,00. Assumindo nível confiança de 95% (Ztab=±1,96), é possível concordar com a alegação feita pela revista? Resposta: Como Ztab= ± 1,96 (95% deconfiança), o valor de Zcalc= -2,54 não pertence ao intervalo da Ho (-1,96<zcalc < 1,96), portanto está localizado na região de rejeição (RR) que indica a
hipótese nula (Ho) deve ser rejeitada e, assim deverá ser aceita a H1 (? ? R$820.000,00). Assim é possível supor com base nas informações da amostra que a alegação feita pela revista não seja verdadeira.

3-Uma empresa que comercializa banco de dados com informações sobre assinantes de jornais e revistas assegura que a renda média dos assinantes é de, no mínimo, R$850,00. Uma amostra aleatória com 24 pessoas revelou uma média mensal igual à R$ 800,00, com desvio padrão amostral de R$200,00. Estatisticamente é possível concordar com a alegação da empresa? Assuma um nível de confiança de 95%.( dado: ztab = 1,96). Resposta Resposta: tcalc=-1,22, Como ttab= ± 2,064 (95% de confiança – Tabela ANEXO; n-1=23), o valor de tcalc= - 1,22, está localizado está no intervalo delimitado pelos valores tabelados (-2,064< tcalc<+2,064) ,ou seja, está localizado na região de aceitação de Ho indicando que a renda média dos assinantes é de, no mínimo, R$850,00.
nandabhz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Jun 03, 2012 13:41
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: adm
Andamento: cursando

Re: probabilidade

Mensagempor joaofonseca » Seg Jun 04, 2012 11:02

nandabhz escreveu:To em duvida nestas 3 questoes de estatisticas abaixo. Alguem poderia me ajudar a resolver? Já coloquei as respostas, porem nao consegui desenvolve-las.


nandabhz ,se não abrires um novo tópico por cada pergunta vais continuar em dúvida, pois ninguém vai responder!
Mesmo que abrás um novo tópico, terás que te esforçar mais do que fazer copy+paste das perguntas, para alguém dar alguma atenção.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D