• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Numeros Complexos] : No circulo trigonometrico?

[Numeros Complexos] : No circulo trigonometrico?

Mensagempor Priscilamoraes307 » Sex Jun 01, 2012 20:35

Determine \beta para que o SISTEMA tenha solução única:

\left|Z \right| = 4

\left|Z - i \right| = \beta


Só consegui fazer que \left|Z \right| = x² + y² = 16 raio = 4

é uma equação da circunferência com raio = 4 ? Tenho que achar o afixo? como faço para achar o angulo?


Obrigada!!!!!!!
Priscilamoraes307
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 01, 2012 20:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Numeros Complexos] : No circulo trigonometrico?

Mensagempor Russman » Sáb Jun 02, 2012 03:15

Sim, o módulo de z ser 4 implica que você está considerando o conjunto de números complexos que distam 4 unidades da origem. Ou seja, uma circunferência de raio 4.

Agora, a segunda informação diz que se você sutrái i de z ele deve calcular um módulo beta. Vamos ver oq isso significa:

z=x+yi\Rightarrow \left | z \right |=x^{2}+y^{2} = 4

z-i = x + (y-1)i\Rightarrow \left | z-i \right |=x^{2}+(y-1)^{2}=x^{2}+ y^{2}-2y-1 = \beta

Da 1° equação, sabemos que x² + y² = 4. Apliquemos então na segunda equação esse resultado.

x^{2}+ y^{2}-2y-1 = 4-2y-1=3-2y=\beta \Rightarrow y=\frac{3-\beta }{2}

O que me vem a mente é que para z ser complexo então y dever ser não nulo. Assim temos

\beta\neq 3.

"Solução única" seria selecionar somente 1 complezo de módulo 4. Não sei...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Numeros Complexos] : No circulo trigonometrico?

Mensagempor MarceloFantini » Sáb Jun 02, 2012 12:45

Você quer duas circunferências tangentes. Uma tem centro na origem e raio 4 enquanto que a outra tem centro em i e raio a determinar. Pela configuração do problema, vemos que a solução é \beta = 3. Mas a circunferência pode tangenciar inferiormente apenas, logo \beta = 5 também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Numeros Complexos] : No circulo trigonometrico?

Mensagempor Russman » Sáb Jun 02, 2012 19:54

Áh, sim! Eu escrevi errado a segunda equação. O correto seria


z-i = x + (y-1)i\Rightarrow \left | z-i \right |=\sqrt{x^{2}+(y-1)^{2}}=\sqrt{x^{2}+ y^{2}-2y+1} = \beta \Rightarrow x^{2}+ y^{2}-2y+1 = \beta ^{2}

Fazendo o mesmo processo que anteriormente, obtemos

17-2y = \beta ^{2} \Rightarrow y=\frac{17-\beta ^{2}}{2}.

Agora aplicando este resultado na 1° equação, faz-se uma euqção em x

x^{2}=\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}

que tem duas soluções: x=\left\{\begin{matrix}
\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}}\\ 
-\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}}
\end{matrix}\right.

de onde existira resposta única para o problema quando forem iguais. Logo,

\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}} = -\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}}\Rightarrow \frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4} = 0\Rightarrow \left\{\begin{matrix}
\beta =5\\ 
\beta =3
\end{matrix}\right..

Portanto, a solução pra o seu problema é z = -4i, se \beta = 5 e z=4i se \beta = 3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59