• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinação de ponto

determinação de ponto

Mensagempor wanderley argenton » Seg Mai 28, 2012 13:58

Determinar o ponto B da reta s,de tal forma que o segmento AB intercepte a reta r no ponto C,que o divide na razão de 1/2.São dados:A(-3,1),
(r)x+y=0 e (s)2y-3x+1=0.

Em tempo:Cheguei a determinar o ponto de intersecção das duas retas r e s.Montei o gráfico,com os dados disponíveis e só.

MUITO OBRIGADO.MAS NÃO CONSEGUÍ RESOLVER.
Editado pela última vez por wanderley argenton em Seg Mai 28, 2012 20:20, em um total de 1 vez.
wanderley argenton
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 28, 2012 13:50
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando

Re: determinação de ponto

Mensagempor LuizAquino » Seg Mai 28, 2012 17:42

wanderley argenton escreveu:Determinar o ponto B da reta s,de tal forma que o segmento AB intercepte a reta r no ponto C,que o divide na razão de 1/2.São dados:A(-3,1),
(r)x+y=0 e (s)2y-3x+1=0.


wanderley argenton escreveu:Em tempo:Cheguei a determinar o ponto de intersecção das duas retas r e s. Montei o gráfico,com os dados disponíveis e só.


Como B está sobre a reta s : 2y - 3x + 1 = 0, então esse ponto possui o formato B = \left(k,\, \frac{3}{2}k - \frac{1}{2}\right) , para algum número k.

Como A = (-3, 1) e C é o ponto médio entre A e B (já que C divide o segmento AB na razão de 1/2), temos que C = \left(\frac{-3 + k}{2},\,\frac{1+\left(\frac{3}{2}k - \frac{1}{2}\right)}{2}\right) . Ou seja, temos que C = \left(\frac{-3}{2} + \frac{k}{2},\, \frac{3}{4}k + \frac{1}{4}\right) .

Por outro lado, como C é um ponto da reta r : x + y = 0, temos que as suas coordenadas devem atender essa equação. Isto é, devemos ter:

\left(\frac{-3}{2} + \frac{k}{2}\right) + \left(\frac{3}{4}k + \frac{1}{4}\right) = 0

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)