por Matheus Lacombe O » Dom Mai 27, 2012 18:49
Cálculo de Baricentro com um vértice e um ponto médio- Olá pessoal. Continuo resolvendo a minha antiga apostila positivo e heis que me surge outra dúvida.
- No enunciado deste problema tenho apenas dois pontos de um triangulo ABC. Sendo eles, um vértice A(2,5) e o ponto médio entre os vértices 'B' e 'C' - que chamei de P(5,-4). Com apenas estes dois dados o enunciado pede que seja calculado "[..]o ponto de intersecção das medianas do triângulo ABC.", ou seja, as coordenadas do baricentro
Tentativas:- Bem, antes de mostrar os cálculos gostaria de expor o raciocíneo. Como não tenho os pontos 'B' e 'C' acho que é impossível calcular o baricentro pela fórmula abaixo:

- Portanto, tentei resolver usando a razão de 2/1, uma vez que o baricentro (G) divide as medianas na razão de dois para um.
- Logo:
- Calculando a distancia AG

- Calculando a distancia PG:

- Se d(A,G) = 2.(d(P,G)), logo:

- E agora? não chego a lugar algum!
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por DanielFerreira » Dom Mai 27, 2012 21:24
Matheus,
não garanto que meus cálculos estejam corretos. Fiz assim:
Considerando P o ponto médio de BC (supondo B à esquerda de P), digamos que o segmento BC = 2k, temos que:
B = (5 - k, - 4) e C = (5 + k, - 4)
Com isso:



"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida - ponto medio e coordenada
por deividchou » Qua Ago 07, 2013 13:55
- 2 Respostas
- 1512 Exibições
- Última mensagem por deividchou

Qua Ago 07, 2013 19:04
Geometria Analítica
-
- Área - Sejam ABCD um quadrado de lado 12 cm, E o ponto médio
por marguiene » Sex Out 10, 2014 10:40
- 0 Respostas
- 1513 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:40
Geometria Plana
-
- Cálculo de preço médio de custo
por danniyolivas » Qua Jul 08, 2015 11:53
- 1 Respostas
- 1905 Exibições
- Última mensagem por danniyolivas

Dom Jul 12, 2015 06:54
Matemática Financeira
-
- Cálculo, Valor Médio. Velocidade instantânea.
por leocastilho » Qua Jun 12, 2013 12:35
- 1 Respostas
- 1559 Exibições
- Última mensagem por e8group

Qua Jun 12, 2013 22:40
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de um ponto do paralelogramo
por jmcustodio » Dom Set 30, 2012 23:46
- 1 Respostas
- 1282 Exibições
- Última mensagem por young_jedi

Dom Set 30, 2012 23:59
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.