• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] é possivel multiplicar?

[Integrais] é possivel multiplicar?

Mensagempor Bruno Anastacio » Sáb Mai 26, 2012 23:35

Matemática - Integrais
Tenho que verificar se:

\int_{}^{} f \left(x \right)g \left(x \right) = (\int_{}^{}f(x)dx)(\int_{}^{}g(x)dx)

comecei assim:
\int_{}^{} f \left(x \right)g \left(x \right) = (\int_{}^{}f(x)dx)(\int_{}^{}g(x)dx)
\int_{}^{} f \left(x \right)g \left(x \right) = f(x)\int_{}^{}dx * g(x)\int_{}^{}dx
\int_{}^{} f \left(x \right)g \left(x \right) = f(x)x+c * g(x)x+c

e aqui travei...
Meu raciocínio está certo? Eu tenho que multiplicar (\int_{}^{}f(x)dx)(\int_{}^{}g(x)dx) ?
Bruno Anastacio
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mai 26, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informação
Andamento: cursando

Re: [Integrais] é possivel multiplicar?

Mensagempor MarceloFantini » Dom Mai 27, 2012 15:33

Isto não é verdade. Tome f(x) = g(x) = x no intervalo [0,1] e calcule os dois lados, verá que são diferentes. Quando um enunciado diz "verifique se", isto significa que a afirmação pode não ser verdadeira e cabe a você exibir um contra-exemplo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] é possivel multiplicar?

Mensagempor Guill » Dom Mai 27, 2012 16:32

De fato, isso é impossível para funções não nulas:

\int_{}^{}f(x).g(x)dx = \left(\int_{}^{}f(x)dx \right)\left(\int_{}^{}g(x)dx \right)


Derivando:

f(x).g(x) = \left(\int_{}^{}f(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).f(x)


Se as funções forem iguais (f(x) = g(x)):

f(x) = 2.\left(\int_{}^{}f(x)dx \right)\rightarrow f(x) = 0


Se as funções forem diferentes, existe uma função h(x) não nula tal que f(x) = g(x) + h(x):

[g(x) + h(x)].g(x) = \left(\int_{}^{}g(x)dx \right).g(x) + \left(\int_{}^{}h(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).h(x)

[g(x).g(x) + h(x).g(x) = 2.\left(\int_{}^{}g(x)dx \right).g(x) + \left(\int_{}^{}h(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).h(x)

Daí:

g(x).g(x) + h(x).g(x) = 2.\left(\int_{}^{}g(x)dx \right).g(x) + h(x).g(x)

g(x).g(x) = 2.\left(\int_{}^{}g(x)dx \right).g(x)

g(x) = 2.\left(\int_{}^{}g(x)dx \right)


Chegamos em f(x) = 0.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?