por rayane210 » Seg Mai 21, 2012 08:01
Considere o trapezio ABCD indicado na figura a seguir, no qual sua altura mede 4cm e suas bases medem AD=3cm e BC=5cm
A soma das areas dos triangulos BOC E AOD é:
a)15/2cm²
b)4cm²
c)8cm²
d)12cm²
e)17/2cm²
A figura abaixo é a da questao 17..
http://i45.tinypic.com/11b0z6d.png
-
rayane210
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mai 21, 2012 07:54
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: eletroeletronica
- Andamento: formado
por Anniemf » Sex Mai 25, 2012 20:38
Traçando uma reta que seja altura do triângulo AOD E BOC e chamando as respectivas alturas de x e y,
temos que x+Y=4(altura do trapézio).
Como as retas AD E BC são paralelas,os triângulos AOD E BOC são semelhantes.
Sendo assim temos que : 5/3=x/y
5y=3x
5y-3x=0
Resolvendo o sistema:
x=4-y
5y-3(4-y)=o
5y-12+3y=0
8y=12
y=3/2
x=4-3/2=5/2
Área do triângulo BOC=
5.5/2/2=25/2.1/2=25/4
Área do triângulo AOD=
3.3/2/2=9/2.1/2=9/4
25/4+9/4=34/4=17/2
letra e
-
Anniemf
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Mar 28, 2012 14:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Trapézio
por Mi_chelle » Qui Mai 19, 2011 01:30
- 4 Respostas
- 2881 Exibições
- Última mensagem por Mi_chelle

Ter Mai 24, 2011 17:03
Geometria Plana
-
- Trapézio
por flavio2010 » Sáb Jul 02, 2011 06:05
- 1 Respostas
- 1269 Exibições
- Última mensagem por MarceloFantini

Sáb Jul 02, 2011 18:55
Geometria Plana
-
- Trapézio
por Guilherme Carvalho » Ter Abr 24, 2012 14:40
- 3 Respostas
- 9268 Exibições
- Última mensagem por LuizAquino

Qui Abr 26, 2012 12:01
Geometria Analítica
-
- Trapézio Retângulo
por Fogodc » Qua Abr 07, 2010 19:11
- 0 Respostas
- 1993 Exibições
- Última mensagem por Fogodc

Qua Abr 07, 2010 19:11
Geometria Plana
-
- Área do Trapézio
por Emilia » Qui Fev 03, 2011 14:56
- 1 Respostas
- 2776 Exibições
- Última mensagem por LuizAquino

Qui Fev 03, 2011 16:05
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.