por will94 » Ter Mai 22, 2012 20:32
Preciso resolver esse limite, mas não sei como proceder com uma função com duas raízes diferentes:
![\lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right) \lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right)](/latexrender/pictures/983864eef806490ff669accb4c4b8b0d.png)
O resultado eu sei que dá 3.
Muito obrigado àquele(a) que me ajudar.
-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por LuizAquino » Qua Mai 23, 2012 11:46
will94 escreveu:Preciso resolver esse limite, mas não sei como proceder com uma função com duas raízes diferentes:
![\lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right) \lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right)](/latexrender/pictures/983864eef806490ff669accb4c4b8b0d.png)
O resultado eu sei que dá 3.
Muito obrigado àquele(a) que me ajudar.
Note que:
![\lim_{x\to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x}-4} = \lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}} \lim_{x\to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x}-4} = \lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}}](/latexrender/pictures/66270a21122a47c611a833461b2e2428.png)
Agora multiplique o numerador e o denominador pela expressão:
![\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right) \left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)](/latexrender/pictures/dba77f3257add53a39501f628f35dc8a.png)
Temos então que:
![\lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}} = \lim_{x\to 64} \frac{\left(\sqrt{x} - \sqrt{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}{\left(\sqrt[3]{x}-\sqrt[3]{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)} \lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}} = \lim_{x\to 64} \frac{\left(\sqrt{x} - \sqrt{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}{\left(\sqrt[3]{x}-\sqrt[3]{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}](/latexrender/pictures/8748fbeed84caa221b814d6d9b83e8e9.png)
Agora use os seguintes produtos notáveis:


Tente concluir o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 5121 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- limite.como calculo esse limite?
por jeffinps » Ter Mar 12, 2013 12:07
- 1 Respostas
- 2254 Exibições
- Última mensagem por Douglas16

Ter Mar 12, 2013 14:27
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3329 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 5624 Exibições
- Última mensagem por PRADO

Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Cálculo de limite
por Luciana Bittencourt » Qui Mar 21, 2013 13:10
- 4 Respostas
- 1987 Exibições
- Última mensagem por e8group

Qui Mar 21, 2013 19:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.