• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração

Fatoração

Mensagempor Rogerioeetc » Sex Jul 24, 2009 02:00

Não consigo fatorar isto da forma que se pede, a resposta é: (y/x-x/y).(y/x+x/y) \frac{{x}^{-8}-{y}^{-8}}}{{x}^{-2}*{y}^{-2}*\left({x}^{-4} +{y}^{-4}\left( \right)\right)}
quem conseguir desenvolver... obrigadão!
Rogerioeetc
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jul 23, 2009 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fatoração

Mensagempor DanielFerreira » Sex Jul 24, 2009 11:16

\frac{(x^-4 + y^-4)*(x^-4 - y^-4)}{x^-2 * y^-2 * (x^-4 + y^-4)}

\frac{x^-4 - y^-4}{x^-2 * y^-2}

\frac{\frac{1}{x^4} - \frac{1}{y^4}}{\frac{1}{x^2} * \frac{1}{y^2}}

\frac{y^4 - x^4}{x^4 * y^4} * \frac{x^2 * y^2}{1}

\frac{y^4 - x^4}{x^2 * y^2}

\frac{(y^2 - x^2)(y^2 + x^2)}{x^2 * y^2}

\frac{(y - x)(y + x)(y^2 + x^2)}{x^2 * y^2}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Fatoração

Mensagempor Rogerioeetc » Dom Jul 26, 2009 14:26

Com muita canseira, consegui responder, o pior é usar o tal do editor de fórmulas! Valeu! A resposta é essa ai \frac{\left(x{}^{-2} \right){}^{2}-\left(y{}^{-2} \right){}^{2}}{x{}^{-2}*{y}^{-2}}\Rightarrow\frac{{x}^{-4}-{y}^{-4}}{{x}^{-2}*{y}^{-2}}\Rightarrow\frac{{x}^{-4}}{{x}^{-2}*{y}^{-2}}-\frac{{y}^{-4}}{{x}^{-2}*{y}^{-2}}\Rightarrow\frac{{x}^{-2}}{{y}^{-2}}-\frac{{y}^{-2}}{{x}^{-2}}\Rightarrow\frac{\frac{1}{{x}^{2}}}{\frac{1}{{y}^{2}}}-\frac{\frac{1}{{y}^{2}}}{\frac{1}{{x}^{2}}}\Rightarrow\left(\frac{1}{{x}^{2}}*\frac{{y}^{2}}{1}} \right)-\left(\frac{1}{{y}^{2}}*\frac{{x}^{2}}{1} \right)\Rightarrow\frac{{y}^{2}}{{x}^{2}}-\frac{{x}^{2}}{{y}^{2}}\Rightarrow{\left(\frac{y}{x} \right)}^{2}-{\left(\frac{x}{y} \right)}^{2}\Rightarrow\left(\frac{y}{x}+\frac{x}{y} \right)*\left(\frac{y}{x}-\frac{x}{y} \right)
Rogerioeetc
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jul 23, 2009 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: