• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivação logarítmica.

Derivação logarítmica.

Mensagempor matematicouff » Dom Mai 20, 2012 04:08

Alguém poderia me ajudar nesse assunto?
Estou com dificuldades em derivação logarítmica. Gostaria de saber como se solucionam essas questões e o que estaria fazendo de errado, já que parto sempre do princípio:
Se y={f(x)}^{g(x)} então {f}^{\prime}(x)={f(x)}^{g(x)}.\left[{g}^{\prime}(x).lnf(x)+\frac{g(x)}{f(x)}.{f}^{\prime}(x) \right].
Consegui fazer algumas questões dessa maneira, já outras não consegui de forma alguma. Eis algumas:

a)f(x)=\frac{{e}^{sen2x.\sqrt[]{x}}}{{e}^{cos3x}}

b)f(x)={e}^{(\sqrt[]{x})}.ln(\sqrt[]{x})

c)f(x)=({{e}^{x}})^{x}

d)f(x)={e}^{{x}^{x}}
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivação logarítmica.

Mensagempor LuizAquino » Ter Mai 22, 2012 14:59

matematicouff escreveu:Alguém poderia me ajudar nesse assunto?
Estou com dificuldades em derivação logarítmica. Gostaria de saber como se solucionam essas questões e o que estaria fazendo de errado, já que parto sempre do princípio:
Se y={f(x)}^{g(x)} então {f}^{\prime}(x)={f(x)}^{g(x)}.\left[{g}^{\prime}(x).lnf(x)+\frac{g(x)}{f(x)}.{f}^{\prime}(x) \right].
Consegui fazer algumas questões dessa maneira, já outras não consegui de forma alguma. Eis algumas:

a)f(x)=\frac{{e}^{sen2x.\sqrt[]{x}}}{{e}^{cos3x}}

b)f(x)={e}^{(\sqrt[]{x})}.ln(\sqrt[]{x})

c)f(x)=({{e}^{x}})^{x}

d)f(x)={e}^{{x}^{x}}


Ao invés de "decorar" a fórmula, o ideal é que você aprenda a técnica.

Eu farei o item a) e você tenta resolver o restante.

Temos que:

f(x) = \frac{e^{\,\textrm{sen}\,2x\sqrt{x}}}{e^{\cos 3x}}

Note que f(x) > 0 para todo x no domínio de f. Desse modo, podemos aplicar o logaritmo natural em ambos os membros e ficar com:

\ln f(x) = \ln \left(\frac{e^{\,\textrm{sen}\,2x\sqrt{x}}}{e^{\cos 3x}}\right)

\ln f(x) = \ln \left(e^{\,\textrm{sen}\,2x\sqrt{x}\right) - \ln \left(e^{\cos 3x}}\right)

\ln f(x) = \textrm{sen}\,2x\sqrt{x} - \cos 3x

Derivando ambos os membros, temos que:

\left[\ln f(x)\right]^\prime = \left[\textrm{sen}\,2x\sqrt{x} - \cos 3x\right]^\prime

\frac{1}{f(x)}f^\prime(x) = 3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x

f^\prime(x) = f(x)\left[3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x\right]

f^\prime(x) = \frac{e^{\,\textrm{sen}\,2x\sqrt{x}}}{e^{\cos 3x}}\left[3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x\right]
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}