por TAE » Sex Mai 11, 2012 18:15
Olá pessoal do fórum, boa tarde!
Como desenvolve:
![\frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}= \frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}=](/latexrender/pictures/cfb2780da7c7beb9df7c5195b5b8ff28.png)
*O exercício dá
![\sqrt[]{2}\simeq1,14 \sqrt[]{2}\simeq1,14](/latexrender/pictures/f7462cfb5dc9848a6197e9e0e8fa7677.png)
;
![\sqrt[]{5}\simeq2,24 \sqrt[]{5}\simeq2,24](/latexrender/pictures/f7e859497acc9c319399863552a19f06.png)
*O resultado não pode ser na forma de número irracional
Resposta:
1,858
Valeu
Editado pela última vez por
TAE em Sáb Mai 12, 2012 16:36, em um total de 1 vez.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
-
TAE
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Mar 20, 2012 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: TÉC. ELETRÔNICA
- Andamento: formado
por MarceloFantini » Sáb Mai 12, 2012 14:37
Você procurou racionalizar os denominadores? Quais foram suas tentativas?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por TAE » Sáb Mai 12, 2012 16:38
Consegui, pulei a parte da radiciação porque não consegui escrever no editor de fórmulas, quando multiplicava uma raiz pela outra, uma ficava em cima da outra, eu poderia ter tirado o mmc de 5 e 2 pra para resolver?
![\frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}= \frac{\sqrt[]{5}}{5}+\frac{2\sqrt[]{5}}{2}= 0,48+ 1,41= 1,85 \frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}= \frac{\sqrt[]{5}}{5}+\frac{2\sqrt[]{5}}{2}= 0,48+ 1,41= 1,85](/latexrender/pictures/9b60fbaa875751f8163706845afbf7fd.png)
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
-
TAE
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Mar 20, 2012 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: TÉC. ELETRÔNICA
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Nível fácil - FCC e UPE
por ingridgusmao » Dom Jun 12, 2011 02:41
- 1 Respostas
- 7441 Exibições
- Última mensagem por nietzsche

Sex Jun 24, 2011 22:54
Conjuntos
-
- dúvida fácil
por TAE » Ter Mai 22, 2012 21:04
- 3 Respostas
- 1865 Exibições
- Última mensagem por DanielFerreira

Qui Mai 24, 2012 11:04
Álgebra Elementar
-
- PARECE FÁCIL - Cálculo de sin(x+y)
por Taah » Dom Mar 28, 2010 13:39
- 6 Respostas
- 4297 Exibições
- Última mensagem por Taah

Seg Mar 29, 2010 16:36
Desafios Difíceis
-
- Progressão Geometrica (Fácil)
por DanielRJ » Sex Out 01, 2010 16:13
- 2 Respostas
- 2690 Exibições
- Última mensagem por DanielRJ

Sex Out 01, 2010 16:44
Progressões
-
- funcoes, esse e facil
por tumiattibrz » Qui Mar 10, 2011 01:10
- 1 Respostas
- 1240 Exibições
- Última mensagem por profmatematica

Sex Mar 25, 2011 19:06
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.