-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qui Mar 06, 2008 13:12
Olá Ananda, boa tarde!
A região que está em destaque na sua figura, não é a que o enunciado pede a área.
Eu sei que vendo esta equação

logo pensamos em desenvolver a soma de arcos.
Mas, você pensou na solução geral?
Lembra do conjunto-solução de uma equação trigonométrica que comentei na dúvida anterior?
Tente este caminho!
Encontre o conjunto-solução.
Você terá um

inteiro.
Em seguida, veja que o enunciado especifica um intervalo.
Encontre os valores de

que atendem à condição.
Somente então, você poderá extrair duas retas.
Trace as duas retas no plano cartesiano.
A área pedida está entre elas, no primeiro quadrante, e realmente é

.
Vamos conversando...
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qui Mar 06, 2008 14:17
Ananda, antes, só um comentário.
Eu entendi o que você quis dizer aqui, mas não se deve escrever desta forma:
cos = 0 -->

A idéia fica expressa assim:
Para

,

,

Igualmente:
Para

real,
![\alpha \in [0, \pi] \alpha \in [0, \pi]](/latexrender/pictures/0842c803519eb6c851b3f39181776d01.png)
,

Voltando, o conjunto-solução é este mesmo, está certo!
E

ou

, ótimo!
Você precisa sim utilizar os ângulos, mas em radianos, não em graus.
E depois, por favor, comente como você traça retas no plano cartesiano.
Parece ingênuo, mas é importante. Farei novos comentários a partir de sua resposta.
O exercício está quase acabando. Uma vez que você visualizar as retas, será fácil o cálculo da área pedida.
Até mais.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qui Mar 06, 2008 16:58
Olá!
Certo!
Parece que sua dúvida inicial teve relação com o primeiro quadrante.
Apenas para registrar, sendo

, o primeiro quadrante é a intersecção das regiões representadas por estas inequações:

Veja na figura, incluindo o círculo trigonométrico:

- primeiro_quadrante.jpg (25.97 KiB) Exibido 9969 vezes
E a região do enunciado realmente não cabe dentro do círculo que possui área

.
Sobre os gráficos, seria melhor eu ter perguntado, não como você desenha, mas como você pensa.
No caso de retas, há várias formas, mas acredito que se você fizer uso do que eu tentarei explicar, conseguirá esboçar muitos gráficos mentalmente, apenas olhando para suas equações.
Escrevi um tópico só para o assunto:
Pensando e esboçando gráficoshttp://www.ajudamatematica.com/viewtopic.php?f=72&t=150Bons estudos!
Espero ter ajudado!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qui Mar 06, 2008 17:48
Oi!
É o método da "tabelinha" mesmo...
Mas tenho uma noção de como será a representação (reta decrescente, crescente; parábola) por causa dos gráficos de Física...
Grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dedução da área do círculo.
por Civil UFSCar » Ter Jun 21, 2011 13:24
- 2 Respostas
- 2782 Exibições
- Última mensagem por LuizAquino

Ter Jun 21, 2011 16:08
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de variacao - area do circulo !
por andersoneng » Sex Jun 29, 2012 10:40
- 2 Respostas
- 2790 Exibições
- Última mensagem por Russman

Sex Jun 29, 2012 21:18
Cálculo: Limites, Derivadas e Integrais
-
- A área do círculo determinado pela...
por David_Estudante » Sáb Mai 25, 2013 17:47
- 0 Respostas
- 1042 Exibições
- Última mensagem por David_Estudante

Sáb Mai 25, 2013 17:47
Geometria Analítica
-
- Equação de um Círculo
por Cleyson007 » Qua Abr 07, 2010 11:46
- 4 Respostas
- 1805 Exibições
- Última mensagem por Cleyson007

Qui Abr 08, 2010 12:50
Geometria Analítica
-
- Círculo trigonométrico
por Ananda » Sex Fev 29, 2008 10:56
- 8 Respostas
- 7331 Exibições
- Última mensagem por Ananda

Seg Mar 03, 2008 17:51
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.