• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor debeta56 » Ter Mai 01, 2012 10:59

Considere a seguinte matriz dependente de um ângulo R (delta) = a11 = cos delta, a12 = sen delta, a21 = - sen delta, a22 = cos delta. Considere o vetor como o segmento representad?o por v = a11 = x e a21 = y. Calcule os produtos R(delta)v e R^t(delta)v e interprete os dois vetores resultantes.
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: Matrizes

Mensagempor LuizAquino » Sex Mai 04, 2012 11:10

debeta56 escreveu:Considere a seguinte matriz dependente de um ângulo R (delta) = a11 = cos delta, a12 = sen delta, a21 = - sen delta, a22 = cos delta. Considere o vetor como o segmento representad?o por v = a11 = x e a21 = y. Calcule os produtos R(delta)v e R^t(delta)v e interprete os dois vetores resultantes.


Eu recomendo que você faça uma pesquisa sobre Matriz de Rotação. Por exemplo, vide a página abaixo.

Matriz Rotação
http://wiki.ued.ipleiria.pt/wikiEngenha ... %A7%C3%A3o
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matrizes

Mensagempor debeta56 » Sex Mai 04, 2012 11:59

Eu gostaria de agradecer a gentileza. Obrigado pela atenção
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.