• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas LD e LI]- Relação com determinantes

[Sistemas LD e LI]- Relação com determinantes

Mensagempor Ana_Rodrigues » Seg Abr 30, 2012 15:35

Quando eu estudava Álgebra Linear eu não entendi uma explicação referente a afirmação de que se o detA=0 então os vetores formam um sistema LD se for diferente de zero formam um sistema LI

então eu deduzi o seguinte

A matriz A é a matriz coeficiente AX=0

Se quando através de operações elementares eu reduzir a matriz A a forma escada e obter B e a última linha da matriz for nula por exemplo(uma das propriedade de uma matriz com det=0), e depois for resolver o sistema BX=0, vai dar um sistema indeterminado.

Portanto o sistema será linearmente dependente LD

Meu raciocínio está correto?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Sistemas LD e LI]- Relação com determinantes

Mensagempor MarceloFantini » Sáb Mai 05, 2012 21:09

Uma afirmação falsa que fez é que ter uma linha ou coluna nula é propriedade de matrizes com determinante zero. Note que A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} não tem nenhuma linha ou coluna nula, contudo seu determinante é nulo.

A propriedade a qual você se refere é que se uma linha ou mais for combinação linear de outras, então o determinante é nulo. Pensando como sistema de equações, isto equivale a dizer que através de algumas equações é possível anular as outras, portanto o sistema será indeterminado (linearmente dependente).

É interessante analisar isso geometricamente: pensando em três dimensões, teremos

A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}

X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.

Ao montar o sistema, veremos que cada equação representa um plano onde os vetores normais tem coordenadas iguais aos coeficientes. Quando o sistema for linearmente independente, isto significa que os três planos tem interseção igual a um único ponto, enquanto que linearmente dependente pode dizer que não há interseção (pelo menos dois são paralelos) ou a interseção é uma reta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Sistemas LD e LI]- Relação com determinantes

Mensagempor Ana_Rodrigues » Qua Mai 09, 2012 17:32

Marcelo,

Eu considerei uma matriz com a última linha nula, foi um exemplo, e eu disse que ter uma linha nula era UMA das propriedades, obviamente existem outras propriedades como a citada por você, pois ter uma linha nula significa dizer que esta linha é combinação linear das demais.

Obrigada!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59