por aprendizdematematico » Seg Abr 30, 2012 14:23
Boa tarde.
Eu queria ajuda para algumas induções que não tenho certeza se estão certas, ou não sei...
Essas são as que eu não consegui:
http://imageshack.us/photo/my-images/254/induo1.png/http://imageshack.us/photo/my-images/259/induo3.png/ (nesta, fiz isso, e não consigo sair daqui:
http://imageshack.us/photo/my-images/713/induo.png/)
E tenho essas outras aqui, que eu acho que consegui, mas não tenho certeza, será que alguém confirma pra mim?:
n! >= 3^n, para todo n >= 7 (n pertence aos Naturais)
Base: (n = 7)
7! >= 3^7 ------> 5040 >= 2187 OK
Suponha que vale para n.
Passo: (n = n+1)
Hip: (n+1) >= 3^(n+1)
Tes: (n+1) * n! >= 3^n * 3
n! >= (3^n * 3)/(n+1)
Sabemos por hipótese de indução que n! >=3^n. Ou seja, se provarmos que (3^n) >= (3^n * 3)/(n+1), como temos que n! >= 3^n, a tese será provada.
3^n >= (3^n * 3)/(n+1) --------> 3^n * (n+1) >= 3^n * 3 ---------> (n+1) >= 3 ------------> n >= 2.
O ponto é: a hipótese vale para n Natural, n = 2 é Natural, a hipótese vale?
Obrigado desde já.
-
aprendizdematematico
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 30, 2012 13:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Sáb Mai 05, 2012 20:56
Aprendiz, por favor evite colocar imagens a menos que absolutamente necessário. Sempre digite o enunciado das questões juntamente com suas tentativas usando LaTeX. Isso facilitará entendê-lo e melhor ajudá-lo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- induçao matematica ajuda
por xpanhol » Ter Out 18, 2011 15:07
- 3 Respostas
- 2037 Exibições
- Última mensagem por LuizAquino

Qua Out 19, 2011 20:41
Álgebra Elementar
-
- [Indução Matemática] Ajuda !
por rbhorvath » Qua Nov 21, 2012 15:02
- 14 Respostas
- 7435 Exibições
- Última mensagem por M_Junior

Sáb Abr 05, 2014 22:12
Álgebra Elementar
-
- Provas de Matematica UNIFEI 2008
por WiLLKun » Qua Jan 23, 2008 01:21
- 3 Respostas
- 9962 Exibições
- Última mensagem por admin

Qua Jan 23, 2008 21:57
Vestibulares
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2579 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- Indução Matemática
por gramata » Qua Set 02, 2009 16:52
- 0 Respostas
- 2999 Exibições
- Última mensagem por gramata

Qua Set 02, 2009 16:52
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.