• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstrações

Demonstrações

Mensagempor anamendes » Sáb Abr 28, 2012 13:02

Mostre que:

(cos^4x - sen^4x)/(cos^2x) = 1-tg^2 x

?????????????
anamendes
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Abr 28, 2012 08:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciências e tecnologias
Andamento: cursando

Re: Demonstrações

Mensagempor LuizAquino » Sáb Abr 28, 2012 14:29

anamendes escreveu:Mostre que:

(cos^4x - sen^4x)/(cos^2x) = 1-tg^2 x

?????????????


Dica

Note que \cos^4  x - \,\textrm{sen}^4\,x = \left(\cos^2 x - \,\textrm{sen}^2 \,x\right)\left(\cos^2 x + \,\textrm{sen}^2\,x\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?